引言 上一篇文章中,我们介绍了规则引擎的基本算法与使用: 规则引擎从入门到实践 我们看到,规则引擎的基础算法 Rete 算法其实是基于有向无环图的一种算法。...说明 我们看到,在我们的模拟文章发布流程中,我们将复杂、多分支、存在竞争条件的文章发布流程通过规则引擎模拟实现的任务编排引擎成功变成了串行执行,没有竞争条件存在的简单流程。...,但既然任务是可重入的,那怎么让你的任务重新执行一次呢?...进行上述改造以后,就不再存在这个问题了,因为编排引擎决定了任务不会被执行两次,如果某个任务需要被重新执行,只需要将状态描述类中对应的字段置为 0,其他不需要执行的任务对应的状态字段置为 1,即可保证仅重新执行该节点...,这就是一个任务编排引擎。
任务流简介 任务比如 k8s 概念中的 job,一般指的是短期的会结束的一个离线任务,而人物流就是将一组任务组织起来的流程。比如下面的这个流程。...总结 上面讲的工具大部分是 pipeline工具,使用的场景也在 ci/cd 上(尽管大部分工具实际也可以用来干别的事情),这种工具非常多,各大云厂商也提供了各种 workflow/pipeline 引擎比如...成熟的任务流引擎,应该有如下4层架构(图和分层方式来自 https://juejin.im/post/5ee2f6ece51d457848686ef8) [image.png] 第一层:用户交互层。...如:模板记录,历史执行记录等 第三层:引擎实例层。如:能否水平扩容,流程是否有优先级等 第四层:驱动层。如:一个步骤能干什么活。跑一个容器还是跑一个Spark任务。...选择或者实现一个任务流引擎的时候需要从这四方面判断它的优劣,比如大部分开源工具 在第一层和第二层的支持较好,但是 argo 和 tekton 不能水平扩容,第三层的实现有些不足。
PawSQL 索引推荐引擎是PawSQL自动化SQL优化平台的核心功能,它支持ANSI标准的DML语法以及其他SQL方言的解析,通过对SQL语句的语法分析,结合表结构定义信息及统计信息,对所有可能的语法组合能推荐出合适的索引...PawSQL的索引推荐是基于查询块(Query Block)的,某些重写优化算法能够将索引推荐相关的部分推导或是下推至查询块中,从而让索引推荐引擎推荐出合适的索引,下面以过滤谓词下推重写为例,介绍重写优化如何影响索引的推荐...where c_acctbal>0 group by nationkey ) as p where p.nationkey= 100 单纯的分析查询块p,PawSQL索引引擎推荐出的索引是...类似的,能够帮助PawSQL索引引擎推荐更有效的索引的重写优化算法还包括:LIMIT子句下推重写优化,外连接转化为内连接优化,投影下推优化,SATTC优化等等。...PawSQL Engine, 是PawSQL系列产品的后端优化引擎,可以以docker镜像的方式独立安装部署,并通过http/json的接口提供SQL优化服务。
而当我们购物时,我们通常会购买我们所信任的人推荐的商品。如今是数字时代,人们网上购物时常会使用购物推荐引擎。 推荐引擎是一种数据过滤引擎,它通过算法及数据来给特定的用户推荐相关商品。...随着网络数据的日益暴涨,用户数量的显著提升,推荐引擎对于网店及电商公司的重要性日渐提高。其重要性表现在:电商公司通过推荐引擎查找信息,根据用户的喜爱偏好为其提供相关商品信息。 推荐引擎如何工作?...典型的推荐引擎通过以下四个阶段处理数据:收集,存储,分析和过滤。...(就像亚马逊推荐引擎一样,拥有“组合购买”、“为你推荐”标签) 存储数据 通过算法处理越多的数据,推荐结果就更加精准。这意味着,任何推荐引擎项目都可以转变成大数据项目。...在保存用户评分或评论时,需要一个可灵活管理的数据库,以此尽量减少任务请求量,更加注重推荐本身。云数据库版SQL可以满足上述的需求,同时能够简单、直接地加载数据。
我们于 2022 年下半年启动了 DGraph 的研发,DGraph 是一个 C++项目,目标是打造一个高效易用的推荐引擎。推荐场景的特点是表多、数据更新频繁、单次查询会涉及多张表。...了解这些特点,对于推荐引擎的设计非常重要。通过阅读本文,希望能对大家了解推荐引擎有一定帮助。为什么叫 DGraph?...因为推荐场景主要是用 x2i(KVV)表推荐为主,而 x2i 数据是图(Graph)的边,所以我们给得物的推荐引擎取名 DGraph。...读写模型 推荐场景需要支持在线服务更新数据,因此引擎有读也有写,所以它也存在读写问题。另外引擎还需要对索引的空间进行管理,类似于 JAVA 系统里面 JVM 的内存管理工作,不过引擎做的简单很多。...但是在推荐引擎里面,对于读取的性能要求非常高,核心数据的访问如果引入锁,会让引擎的查询性能受到很大的限制。 推荐引擎是一个读多写少的场景,因此我们在技术路线上选择的是无锁数据结构 RCU。
推荐系统很重要的一点是“快”,所以索引还必须有实时更新能力。...进一步,如果经常需要确认为什么一篇文章没有被推荐出来,通常需要人工分析日志,有了elk后建立简单分析流程可以快速解决这个问题。...更进一步,利用elk完全可以对整个推荐流程进行日志分析,如分析推荐理由,过滤原因,统计推荐效果等。当然对于体量大的业务日志量会非常惊人,这里只要抽样部分日志即可。...kafka+storm/flink实时数据处理 “天下武功,唯快不破”,推荐系统尤其如此:必须尽快地更新画像、排序模型。...强大的A/B实验工具是做好推荐的关键。A/B实验工具几乎都是按google的分层实验论文设计的。要做好推荐,这方面还是值得研究研究的。
推荐引擎是一定要搞得了,业务发展极快,哪个业务都要接入个性化推荐。构建推荐引擎没什么好探讨的了,现在需要思考和探讨的是怎么构建推荐引擎。 从哪个角度思考呢?...杉枫是从个性化推荐系统、广告投放系统、搜索引擎三个既存在相似又有差异的系统着手思考的。...搜索引擎有极好的开源实现以及大量的架构分享文章,确定从搜索引擎入手,借鉴搜索引擎打造属于我们自己推荐引擎。 ...有了搜索引擎可以借鉴,但推荐系统虽然像搜索引擎,但毕竟不是搜索,推荐比搜索多得是,召回流程更多、更广泛,并且需要召回的范围是基于用户画像来构建的,搜索核心是输入词与文章之间的匹配程度,搜索引擎核心到今天依然是...个性化推荐是一个正在蓬勃发展的技术,推荐引擎会不断吸收内部、外部,以及其他领域的结果不断进行完善。
不过这个微任务队列是给 V8 引擎内部使用的,所以你是无法通过 JavaScript 直接访问的。 那么微任务是怎么产生的呢?在现代浏览器里面,产生微任务有两种方式。...通过 DOM 节点变化产生的微任务或者使用 Promise 产生的微任务都会被 JS 引擎按照顺序保存到微任务队列中。现在微任务队列中有了微任务,那么接下来就要看看微任务队列是何时被执行的。 ...通常情况下,在当前宏任务中的 JavaScript 快执行完成时,也就是在 JavaScript 引擎准备退出全局执行上下文并清空调用栈的时候,JavaScript 引擎会检查全局执行上下文中的微任务队列...如果在执行微任务的过程中,产生了新的微任务,一样会将该微任务添加到微任务队列中,V8 引擎一直循环执行微任务队列中的任务,直到队列清空才算执行结束。...这时候,微任务就可以上场了,在每次 DOM 节点发生变化的时候,渲染引擎将变化记录封装成微任务,并将微任务添加进当前的微任务队列中。这样当执行到检查点的时候,V8 引擎就会按照顺序执行微任务了。
文章前言 本篇文章主要介绍一些我们在渗透测试过程中比较常用也是使用范围较广的渗透测试搜索引擎 搜索引擎 Fofa http://fofa.info/ Shodan https://www.shodan.io
代码在GitHub上: https://github.com/HeliumProject
N3停止更新之后, 这个是目前我觉得质量最高的代码 http://heliumproject.org/ 代码在GitHub上: https://github.c...
推荐引擎 Easy-Tech #035# 推荐引擎通常是指利用机器学习(基于用户的过去选择、偏好以及内容提供商的目录)来预测特定用户有可能观看哪一部电影或者视频的系统。...在本文中,我们将从OTT服务提供商的角度来了解推荐引擎、它所需的数据、以及它的用途等。...内容推荐引擎所需数据 推荐引擎需要大量数据(正确数量和质量)推荐和识别模式。比如,需要适当的数据来确保被推荐给用户的电影适合用户的观看偏好和模式。...视频内容推荐引擎的应用场景 推荐引擎对于视频平台的成功至关重要,并且有助于提升内容发现、用户互动、营销活动、再营销“休眠”用户、减少用户流失等。...| 改进的搜索和自动补全 平台的搜索引擎也可以根据用户偏好进行推荐。
因为工作需要,最近有在学习商品搜索引擎的东西。会涉及到系统推荐、个性化推荐和排序推荐。 排序推荐 比较偏向于 输入联想(类似于淘宝,我们输入手机,下面会提示推荐)。 但是本文,重点介绍个性化推荐。...系统推荐: 据大众行为的推荐引擎,对每个用户都给出同样的推荐,这些推荐可以是静态的由系统管理员人工设定的,或者基于系统所有用户的反馈统计计算出的当下比较流行的物品。...排序推荐:结合 用户输入的关键词、系统推荐、个性化推荐 三个维度进行排序推荐。...关于个性化推荐,根据推荐引擎的数据源有三种模式:基于人口统计学的推荐、基于内容的推荐、基于协同过滤的推荐 结合个人理解,具体化简述上面三个概念: (1)基于人口统计学的推荐:针对用户的“性别、年龄范围、...内容推荐和协同过滤推荐 结合 应该能满足大部分需求, 基于人口统计学的推荐看情况,如果有必要再实现。 另外 基于协同过滤 数据量 大的时候 才比较准。这种情况内容推荐 可以补位,推荐类似商品。
吕慧伟,腾讯云布道师,腾讯社交网络运营部高级工程师,腾讯通用推荐系统神盾开发负责人,腾讯云推荐引擎架构师。...三、腾讯云推荐引擎 基于上面的经验,我们打造了腾讯云推荐引擎。...腾讯云推荐引擎(CRE)是面向广大中小互联网企业打造的一站式云推荐引擎解决方案,提供安全、便捷、精准、可靠的推荐系统服务,提升其业务的点击转化率和用户体验。...腾讯云推荐引擎 腾讯云推荐引擎具有下面的功能: 一天接入,快速上线; 模板化算法,节省99%代码; 快速扩容,应对业务快速增长; 稳定可靠,节省运维开销。...3.云推荐引擎的解决方案,在通用化的基础上,同时考虑了易用性,方便用户接入。
前言 任务调度是指基于给定时间点,给定时间间隔或者给定执行次数自动执行任务。...这个线程会轮询所有任务,找到一个最近要执行的任务,然后休眠,当到达最近要执行任务的开始时间点,TimerThread 被唤醒并执行该任务。...Timer 的优点在于简单易用,但由于所有任务都是由同一个线程来调度,因此所有任务都是串行执行的,同一时间只能有一个任务在执行,前一个任务的延迟或异常都将会影响到之后的任务。...其设计思想是,每一个被调度的任务都会由线程池中一个线程去执行,因此任务是并发执行的,相互之间不会受到干扰。...由此可见,ScheduleAtFixedRate 是基于固定时间间隔进行任务调度,ScheduleWithFixedDelay 取决于每次任务执行的时间长短,是基于不固定时间间隔进行任务调度。
来源:专知本文为论文,建议阅读5分钟多任务学习已广泛应用于现实世界的推荐者。 多任务学习已广泛应用于现实世界的推荐者,以预测不同类型的用户反馈。...然而,由于它们采用特定于任务的二进制标签作为训练的监督信号,关于如何准确地对物品进行排序的知识并没有在任务之间完全共享。本文旨在增强多任务个性化推荐优化目标的知识迁移。...我们提出了一个跨任务知识蒸馏(Cross-Task Knowledge精馏)的推荐框架,该框架由三个步骤组成。...1) 任务增强: 引入具有四元损失函数的辅助任务来捕获跨任务的细粒度排序信息,通过保留跨任务一致性知识来避免任务冲突; 2) 知识蒸馏: 我们设计了一种基于增强任务的知识蒸馏方法来共享排序知识,其中任务预测与校准过程相结合
针对这一现象, 拥有一款实时的风控引擎是所有带有金融性质的APP 的当务之急,Radar应景而生。...Radar前身是笔者前公司的一个内部研究项目,由于众多原因项目商业化失败,考虑到项目本身的价值,弃之可惜, 现使用Springboot进行重构,删除了很多本地化功能,只保留风控引擎核心,更加通用,更加轻量...项目特点 实时风控,特殊场景可以做到100ms内响应 可视化规则编辑器,丰富的运算符、计算规则灵活 支持中文,易用性更强 自定义规则引擎,更加灵活,支持复杂多变的场景 插件化的设计,快速接入其它数据能力平台...Redis:提供缓存支持,Engine 利用发布订阅特性监听管理端相关配置的更新 Groovy:规则引擎,风控规则最后都生成 groovy 脚本, 实时编辑,动态生成,即时生效。
摘要:推荐系统其实离我们并不遥远,就像大家到淘宝上买东西一样,买完东西之后,屏幕下方就会出现类似的商品。这是推荐系统最直接的一种形式,那么在其他方面的推荐系统、推荐引擎会遇到什么样的挑战呢?...这句话的源头出自推荐引擎,推荐引擎就是根据你过去的购买记录,来预测你未来的购买行为的一种系统,它还可以根据和你拥有类似品味的人的购买记录来预测你接下来的行为。 好的推荐系统能够将营业额提高几个百分点。...这也是为什么网店和在线服务一定要拥有一个推荐系统的原因。 通过上面的解释,我们不难理解为什么人们对于提高推荐引擎的性能一直兴趣高昂。...那么,对于推荐引擎来说,下一个突破点在哪里? 今天,从在 MIT 工作的 Amy Zhang 和他同事的身上,我们找到了答案。...系统推荐的最终方法 最后的问题是,一旦算法发现多人共享一个账号时,什么样的推荐才是合适的。答案非常直接,选取每个使用者最有可能接受的几个推荐,将这些推荐组成一个表单显示。
一、前言 结合目前已存在的商品推荐设计(如淘宝、京东等),推荐系统主要包含系统推荐和个性化推荐两个模块。...系统推荐: 根据大众行为的推荐引擎,对每个用户都给出同样的推荐,这些推荐可以是静态的由系统管理员人工设定的,或者基于系统所有用户的反馈统计计算出的当下比较流行的物品。...3.2、三种推荐模式的介绍 据推荐引擎的数据源有三种模式:基于人口统计学的推荐、基于内容的推荐、基于协同过滤的推荐。...3.5、Mahout实现协同过滤实例 协同过滤在mahout里是由一个叫taste的引擎提供的, 它提供两种模式,一种是以jar包形式嵌入到程序里在进程内运行,另外一种是MapReduce Job形式在...可参考文献:https://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html 3.9、冷启动问题 所谓冷启动,是指对于很多推荐引擎的开始阶段
---- 本文内容节选自《深度学习推荐系统》一书。 深度学习在推荐系统领域掀起了一场技术革命,本书是一本致力于提高一线算法工程师们工业级推荐系统实践能力的技术干货。...从某种意义上讲,Facebook基于GBDT+LR的广告推荐系统成了连接传统机器学习推荐系统时代和深度学习推荐系统时代的桥梁。...推荐系统应用场景 Facebook广告推荐系统的应用场景是一个标准的CTR预估场景,系统输入用户(User)、广告(Ad)、上下文(Context)的相关特征,预测CTR,进而利用CTR进行广告排序和推荐...Facebook的数据量之大,单节点的模型训练必然无法快速完成训练任务,因此模型的并行训练就是必须采用的解决方法。...==图书推荐== 王喆 编著 一线大厂推荐工程师倾囊相授 教你从零开始构建前沿、实用的推荐系统知识体系 揭秘巨头公司推荐系统背后的逻辑 梳理深度学习推荐系统的发展脉络,厘清每个关键模型和技术的细节
领取专属 10元无门槛券
手把手带您无忧上云