理想的学习模型应当能 按顺序地学习一系列不断到来的新类, 从而使自身 的判别能力不断增强——这种学习过程和人类学习 新事物的过程存在共性[21,22] ....按顺序完成训练后, 模型需要在所 有训练过的类别上进行评估, 一个优秀的类别增量 模型能既学得新类知识, 又不遗忘旧类知识....文 献[42] 主要从生物学角度对当前增量学习算法进行 分析. 与上述已有综述不同, 本文主要关注基于深 度学习的类别增量学习算法, 更加全面深入地对当 前类别增量学习算法进行划分和综述....基于深度学习的类别增量学习算法分类
考虑到机器学习的三个重要层面——数据层 面、参数层面和算法层面, 本文依此对当前的类别 增量学习算法进行分类和总结....目前机 器学习领域正在关注开放世界学习的研究, 包括语 义分割[213] , 人脸检测[214] , 图像分类[20] 等.