通过纳入大量库和一些标准数据模型,提供了高效操作大型数据集所需工具; 安装 pip install pandas 数据类型 Series 定义 一维的数组类型,其中每个元素有各自标签;可当作一个由带标签元素组成的...numpy数组,标签可以是数字或字符; 关键点 均匀数据; 尺寸大小不变; 数据的值可变; Dataframe 定义 二维、表格型的数组结构,可存储许多不同类型的数据,且每个轴都有标签,可当作一个...at, .iat, .loc, .iloc, .ix print("df['A']:\n", df['A']) # 选择一列产生一个系列 print('df[0:3]:\n', df[0:3]) # 按标签选择...# 2、upper() 将Series/Index中的字符串转换为大写。 # 3、len() 计算字符串长度。 # 4、strip() 帮助从两侧的系列/索引中的每个字符串中删除空格(包括换行符)。...# 9、replace(a,b) 将值a替换为值b。 # 10、repeat(value) 重复每个元素指定的次数。 # 11、count(pattern) 返回模式中每个元素的出现总数。
通过纳入大量库和一些标准数据模型,提供了高效操作大型数据集所需工具; 安装 pip install pandas 数据类型 Series 定义 一维的数组类型,其中每个元素有各自标签;可当作一个由带标签元素组成的...numpy数组,标签可以是数字或字符; 关键点 均匀数据; 尺寸大小不变; 数据的值可变; Dataframe 定义 二维、表格型的数组结构,可存储许多不同类型的数据,且每个轴都有标签,可当作一个series...at, .iat, .loc, .iloc, .ix print("df['A']:\n", df['A']) # 选择一列产生一个系列 print('df[0:3]:\n', df[0:3]) # 按标签选择...# 2、upper() 将Series/Index中的字符串转换为大写。 # 3、len() 计算字符串长度。 # 4、strip() 帮助从两侧的系列/索引中的每个字符串中删除空格(包括换行符)。...# 9、replace(a,b) 将值a替换为值b。 # 10、repeat(value) 重复每个元素指定的次数。 # 11、count(pattern) 返回模式中每个元素的出现总数。
的创建arrayimport numpy as npa = np.array([2,3,4]) # ar ray来创建一维数组,数组与列表不同:数组没有逗号分割a2 = np.array([2,3,4]...,第二个数组为列,一一对应np.sort(a) # a矩阵每行按由小到大的顺序排序np.transpose(a) # a矩阵的转置矩阵,也可以:a.Tnp.clip(a,5,9) # a矩阵中所有小于5...((a,b)) # 将a与b合并(左右),即新矩阵第一行为a与b# 对于一维矩阵而言,不能通过a.T来将其转换为竖着的即nx1为矩阵# np.newaxis添加一个维度c = a[:,np.newaxis...相同,转置df.sort_index(axis=1,ascending=False) # 列按降序排序,相应的值位置变化df.sort_values(by='E') # 按'E'列的值进行升序排序"""...(现在已经被弃用)df[df.A将A列中小于8的值对于数据与其他列保留形成新dataframe""""""# pandas设置值import pandas as pdimport numpy
提取、添加、删除列 用方法链分配新列 索引 / 选择 数据对齐和运算 转置 DataFrame 应用 NumPy 函数 控制台显示 DataFrame 列属性访问和 IPython 代码补全 提取、添加...键是新字段的列名,值为是插入值(例如,Series 或 NumPy 数组),或把 DataFrame 当做调用参数的函数。返回结果是插入新值的 DataFrame 副本。 0.23.0 版新增。...类似于多维数组,T 属性(即 transpose 函数)可以转置 DataFrame: # only show the first 5 rows In [103]: df[:5].T Out[103]...Series 应用 __array_ufunc__,支持 NumPy 通用函数。 通用函数应用于 Series 的底层数组。...如有可能,应用 ufunc 而不把基础数据转换为多维数组。 控制台显示 控制台显示大型 DataFrame 时,会根据空间调整显示大小。info()函数可以查看 DataFrame 的信息摘要。
数组排序操作 2.5.3 数组转置 2.5.4 随机数生成 1. numpy的random库 第3章 pandas基础 3.1 series 3.1.1 创建series对象 3.1.2 Series...NumPy 的数组中比较重要 ndarray 对象属性有: numpy的常用数据类型 2.2 创建数组 创建二维数组 # 创建二维数组 array_2d = np.array([[1,...输出为: [[11 12 13] [14 15 16]] 2.5 Numpy的约减即操作 2.5.1 约减操作 约减:表示将众多数据按照某种规则合并成一个或几个数据。...2.5.3 数组转置 熟悉数组的转置,可以通过T属性、transpose()方法、swapaxes()方法实现数组转置操作 2.5.4 随机数生成 1. numpy的random库 python里随机数生成主要有两种方式...排序 排序1 - 按值排序 .sort_values pandas中可以使用sort_values()方法将Series、DataFrmae类对象按值的大小排序。
结构多维数组或记录多维数组 Series DataFrame 除了数据,还可以有选择地传递 index(行标签)和 columns(列标签)参数。...传递了索引或列,就可以确保生成的 DataFrame 里包含索引或列。Series 字典加上指定索引时,会丢弃与传递的索引不匹配的所有数据。 没有传递轴标签时,按常规依据输入数据进行构建。...Python DataFrame 的列按字典键的字母排序。...用 Series 字典或字典生成 DataFrame 生成的索引是每个 Series 索引的并集。先把嵌套字典转换为 Series。如果没有指定列,DataFrame 的列就是字典键的有序列表。...的运作方式与 NumPy 二维数组不同。
图像转数组与维度扩展 # 转换为NumPy数组 img_array = image.img_to_array(img) print("原始数组形状:", img_array.shape) # (150...DataFrame数据加载 flow_from_dataframe 方法用于从 pandas DataFrame 中加载图像数据。它适用于图像文件路径和标签信息存储在一个 CSV 文件中的情况。...适用于较为灵活的场景,如图像路径和标签可能并非按文件夹结构组织。...两种打开方式对比 特性 flow_from_directory flow_from_dataframe 数据格式 按文件夹组织,每个文件夹为一个类别 通过 CSV 文件指定图像路径和标签 适用场景 图像按类别存放在不同文件夹中...最佳实践建议 内存优化策略: 使用flow_from_directory流式处理大数据集 设置合适的batch_size(通常32-256) 启用多进程加速(workers=4) 格式兼容指南: 统一转换为
排序 pandas 支持三种排序方式:按索引标签排序、按列值排序以及按两者组合排序。...数据类型 在大多数情况下,pandas 使用 NumPy 数组和数据类型来处理 Series 或 DataFrame 的单个列。...()将返回较低的公共分母,意味着可以容纳结果同质化的 NumPy 数组中的所有类型的数据类型。...(range(2))).dtypes Out[361]: a int64 dtype: object 请注意,当创建数组时,Numpy 将选择平台相关类型。...()将返回数据类型的最低公共分母,即可以容纳结果中所有类型的同类数据类型 NumPy 数组。
DataFrame.to_numpy() 作为一个方法,更清楚地表明返回的 NumPy 数组可能不是 DataFrame 中相同数据的视图。...排序 pandas 支持三种排序方式:按索引标签排序、按列值排序以及按两者的组合排序。...()将返回数据类型的最低公共分母,即可以容纳结果同类数据类型的 NumPy 数组。...Series.array将始终返回一个ExtensionArray,并且永远不会复制数据。Series.to_numpy()将始终返回一个 NumPy 数组,可能会以复制/强制转换值为代价。...作为一个方法,DataFrame.to_numpy()更清晰地表明返回的 NumPy 数组可能不是 DataFrame 中相同数据的视图。
Pandas主要的数据结构 Series:带标签的一维同构数组; DataFrame:带标签的,大小可变的,二维异构表格。...Numpy数组创建DataFrame dates = pd.date_range('20200501', periods=6) # print(datas) df1 = pd.DataFrame(np.random.randn...df1.sort_values(by='B') # 将df转化为array df1.to_numpy() 04 一般的选择数据 # 直接获取数据 df1['A'] # 按照索引值切片行数据 df1...[0:3] # 按照索引名称切片行数据(首尾都可以获取) df1['20200501':'20200503'] 05 按标签选择数据 # 提取某行数据 df1.loc[dates[0]] # 按照标签选择多列数据...groupby('A').sum() # 对分组进行迭代 for name, group in df5.groupby('B'): print(name) print(group) # 将分组结果转换为字典
数据结构 Pandas的核心数据结构有两类: Series:一维标签数组,类似于NumPy的一维数组,但支持通过索引标签的方式获取数据,并具有自动索引功能。...大小写转换: 使用str.lower ()将所有字符转换为小写。 使用str.upper ()将所有字符转换为大写。...例如,可以将日数据转换为月度或年度数据。使用resample方法可以方便地实现这一操作。...数据重塑(Data Reshaping) : 数据重塑是将数据从一种格式转换为另一种格式的过程,常见的方法有pivot和melt。这些方法可以用于将宽表数据转换为长表数据,或者反之。...相比之下,NumPy主要关注数值计算和科学计算问题,其自身有较多的高级特性,如指定数组存储的行优先或者列优先、广播功能以及ufunc类型的函数,从而快速对不同形状的矩阵进行计算。
表 4.1:一些重要的 NumPy 数组创建函数 函数 描述 array 将输入数据(列表、元组、数组或其他序列类型)转换为 ndarray,可以通过推断数据类型或显式指定数据类型来完成;默认情况下会复制输入数据...如果由于某种原因(例如无法将字符串转换为float64)而转换失败,将引发ValueError。...表 4.8:常用的numpy.linalg函数 函数 描述 diag 返回方阵的对角线(或非对角线)元素作为 1D 数组,或将 1D 数组转换为具有非对角线零的方阵 dot 矩阵乘法 trace 计算对角线元素的和...2001 1.7 2.4 2002 3.6 2.9 您可以使用类似于 NumPy 数组的语法转置 DataFrame(交换行和列): In [75]: frame3.T Out...在构建 Series 或 DataFrame 时使用的任何数组或其他标签序列都会在内部转换为 Index: In [84]: obj = pd.Series(np.arange(3), index=["
头部数据 tail查看 DataFrame 尾部数据 转Numpy数组 数据统计摘要describe函数 横纵坐标转换位置 反向排列列数据 获取列数据 使用[]数组切片 用标签提取一行数据 用标签选择多列数据...、不同索引的数据轻松地转换为 DataFrame 对象; 基于智能标签,对大型数据集进行切片、花式索引、子集分解等操作; 直观地合并(merge)、**连接(join)**数据集; 灵活地重塑(reshape...数据结构 维数 名称 描述 1 Series 带标签的一维同构数组 2 DataFrame 带标签的,大小可变的,二维异构表格 为什么有多个数据结构? Pandas 数据结构就像是低维数据的容器。...# 通过numpy生成一个6行4列的二维数组,行用index声明行标题,列用columns声明列标题 df = pd.DataFrame(np.random.randn(6, 4), index=dates...转Numpy数组 import pandas as pd import numpy as np dates = pd.date_range('20230213', periods=6) df = pd.DataFrame
它可以应用于numpy数组对象,返回一个表示数组形状的元组。 使用方法如下: numpy.shape(arr) 参数说明: arr:要获取形状的数组对象。...dtypes() 在Python中,dtypes函数是numpy库中的一个函数,用于返回一个数组的数据类型。它可以应用于numpy数组对象,并返回该数组中元素的数据类型。...替换重复值:使用.replace()方法可以将DataFrame中的重复值替换为其他值。...DataFrame.astype()函数将DataFrame中的某一列或多列转换为指定的数据类型,或将整个DataFrame转换为指定的数据类型。...示例 【例】利用numpy库的arange函数创建一维浮点数数组arr1,然后将arr1数组的数据类型转换为整型。 关键技术: astype函数。
格式,可以通过float()函数转换为python float格式,numpy.float与float占用字节不同,s[-1]会报错?...带有标签的二维数组”。...基本操作技巧 数据查看、转置 / 添加、修改、删除值 / 对齐 / 排序 数据查看、转置 # 数据查看、转置 df = pd.DataFrame(np.random.rand(16).reshape(...=['A', 'B', 'C']) print(df1 + df2) # DataFrame对象之间的数据自动按照列和索引(行标签)对齐 输出为: /排序 排序1 - 按值排序 .sort_values...pandas中可以使用sort_values()方法将Series、DataFrmae类对象按值的大小排序。
矢量化操作和与 Series 的标签对齐 在使用原始 NumPy 数组时,通常不需要逐个值循环。在 pandas 中使用 Series 时也是如此。...如果没有传递轴标签,它们将根据常识规则从输入数据中构建。 从 Series 或字典的字典 结果的 索引 将是各个 Series 的索引的 并集。如果有任何嵌套字典,这些将首先转换为 Series。...如果未传递轴标签,它们将根据常识规则从输入数据构建。 来自 Series 字典或字典 结果的索引将是各个 Series 的并集。如果有任何嵌套的字典,它们将首先被转换为 Series。...如果有任何嵌套的字典,这些将首先转换为 Series。如果未传递任何列,则列将是字典键的有序列表。...和 Series 之间进行操作时,默认行为是将 Series 的 索引 与 DataFrame 的 列 对齐,从而进行按行广播。
'' '''2、np.cumsum()返回一个数组,将像sum()这样的每个元素相加,放到相应位置''' '''NumPy数组实际上被称为ndarray NumPy最重要的一个特点是N维数组对象...ndarray,它是一系列同类型数据的集合 1、创建数组,将序列传递给numpy的array()函数即可,从现有的数据创建数组,array(深拷贝),asarray(浅拷贝); 或者使用arange...△ np.r_[] 按行上下连接两个矩阵 6、NumPy 数组操作 △ n.reshape(arr,newshape,order=)数组,新形状,"C"-按行、"F"-按列、"A"-原顺序、"k"-元素在内存中痴线顺序...△ n.transpose()对换数组的维度,矩阵的转置 △ ndarray.T 与上类似,用于矩阵的转置 △ n.concatenate((a1, a2, ...), axis)沿指定轴连接同形数组...:点到选中的行Ctrl+Shift+- #将代码块合并:使用Shift选中需要合并的框,Shift+m #在代码块前增加新代码块,按a;在代码块后增加新代码块,按b; #删除代码块,按dd #运行当前代码块
二者之间主要区别是: 从数据结构上看: numpy的核心数据结构是ndarray,支持任意维数的数组,但要求单个数组内所有数据是同质的,即类型必须相同;而pandas的核心数据结构是series和dataframe...pandas核心数据结构有两种,即一维的series和二维的dataframe,二者可以分别看做是在numpy一维数组和二维数组的基础上增加了相应的标签信息。...正因如此,可以从两个角度理解series和dataframe: series和dataframe分别是一维和二维数组,因为是数组,所以numpy中关于数组的用法基本可以直接应用到这两个数据结构,包括数据创建...考虑series和dataframe兼具numpy数组和字典的特性,那么就不难理解二者的以下属性: ndim/shape/dtypes/size/T,分别表示了数据的维数、形状、数据类型和元素个数以及转置结果...广播机制,即当维度或形状不匹配时,会按一定条件广播后计算。由于pandas是带标签的数组,所以在广播过程中会自动按标签匹配进行广播,而非类似numpy那种纯粹按顺序进行广播。
领取专属 10元无门槛券
手把手带您无忧上云