df[col] # 根据列名,并以Series的形式返回列
df[[col1,col2]] # 以DataFrame形式返回多列
s.iloc[0] # 按位置选取数据
s.loc['index_one...col2降序排列数据
df.groupby(col) # 返回⼀个按列col进⾏分组的Groupby对象
df.groupby([col1,col2]) # 返回⼀个按多列进⾏分组的Groupby对象...df.groupby(col1)[col2].agg(mean) # 返回按列col1进⾏分组后,列col2的均值,agg可以接受列表参数,agg([len,np.mean])
df.pivot_table...(index=col1,values=[col2,col3],aggfunc={col2:max,col3:[ma,min]}) # 创建⼀个按列col1进⾏分组,计算col2的最⼤值和col3的最⼤值...、最⼩值的数据透视表
df.groupby(col1).agg(np.mean) # 返回按列col1分组的所有列的均值,⽀持
df.groupby(col1).col2.agg(['min','max