首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Keras中的Embedding层是如何工作的

在学习的过程中遇到了这个问题,同时也看到了SO中有相同的问题。而keras-github中这个问题也挺有意思的,记录一下。...这个解释很不错,假如现在有这么两句话 Hope to see you soon Nice to see you again 在神经网络中,我们将这个作为输入,一般就会将每个单词用一个正整数代替,这样,上面的两句话在输入中是这样的...[0, 1, 2, 3, 4] [5, 1, 2, 3, 6] 在神经网络中,第一层是 Embedding(7, 2, input_length=5) 其中,第一个参数是input_dim,上面的值是...一旦神经网络被训练了,Embedding层就会被赋予一个权重,计算出来的结果如下: +------------+------------+ | index | Embedding | +--...vector就是下面这个: [[0.7, 1.7], [0.1, 4.2], [1.0, 3.1], [0.3, 2.1], [4.1, 2.0]] 原理上,从keras的那个issue可以看到,在执行过程中实际上是查表

1.4K40

【深度学习】CNN中pooling层的作用

1、pooling是在卷积网络(CNN)中一般在卷积层(conv)之后使用的特征提取层,使用pooling技术将卷积层后得到的小邻域内的特征点整合得到新的特征。...因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计。这个均值或者最大值就是一种聚合统计的方法。 3、做窗口滑动卷积的时候,卷积值就代表了整个窗口的特征。...所以平移不变性不是pooling带来的,而是层层的权重共享带来的。...8x8特征矩阵,主要的特征我们捕获到了,同时又将问题的规模从16x16降到了8x8,而且具有平移不变性的特点。...图中的a(或b)表示,在原始图片中的这些a(或b)位置,最终都会映射到相同的位置。

61010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    由浅入深CNN中卷积层与转置卷积层的关系

    导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷积层,在最近提出的卷积神经网络中越来越常见了,特别是在对抗生成神经网络(GAN)中,生成器网络中上采样部分就出现了转置卷积层...卷积层和全连接层 在CNN提出之前,我们所提到的人工神经网络应该多数情况下都是前馈神经网络,两者区别主要在于CNN使用了卷积层,而前馈神经网络用的都是全连接层,而这两个layer的区别又在于全连接层认为上一层的所有节点下一层都是需要的...转置卷积层 讲完卷积层后,我们来看CNN中另一个进行卷积操作的层次转置卷积层,有时我们也会称做反卷积层,因为他的过程就是正常卷积的逆向,但是也只是size上的逆向,内容上不一定,所以有些人会拒绝将两者混为一谈...,大的正方形中数字1只参与小正方形中数字1的计算,那么在转置卷积中,大正方形的1也只能由小正方形的1生成,这就是逆向的过程。...希望笔者上述的分析和解释能对刚入门CNN的同学有所帮助,而且笔者是从事iOS开发的,对于CNN和深度学习也是刚刚入门,希望各位AI大牛们不吝指教。 5.

    4K111

    keras中文文档之:CNN眼中的世界:利用Keras解释CNN的滤波器

    本文有代码; 本文作者:Francois Chollet 使用Keras探索卷积网络的滤波器 本文中我们将利用Keras观察CNN到底在学些什么,它是如何理解我们送入的训练图片的。...首先,我们在Keras中定义VGG网络的结构: from keras.models import Sequentialfrom keras.layers import Convolution2D, ZeroPadding2D...可视化所有的滤波器 下面我们系统的可视化一下各个层的各个滤波器结果,看看CNN是如何对输入进行逐层分解的。...这意味着我们可以通过使得卷积滤波器具有旋转不变性而显著减少滤波器的数目,这是一个有趣的研究方向。 令人震惊的是,这种旋转的性质在高层的滤波器中仍然可以被观察到。...视觉皮层不是卷积的,尽管它们也分层,但那些层具有皮质列的结构,而这些结构的真正目的目前还不得而知,这种结构在我们的人工神经网络中还没有出现(尽管乔大帝Geoff Hinton正在在这个方面努力)。

    79420

    为何Keras中的CNN是有问题的,如何修复它们?

    因此,为了拥有表现良好的 ReLU CNN,下面的问题必须被重视: ? 作者比较了使用标准初始化(Xavier/Glorot)[2] 和使用它们自己的解初始化深度 CNN 时的情况: ?...在一个 22 层的 ReLU CNN 上使用 Glorot(蓝色)初始化和 Kaiming 的初始化方法进行训练时的对比。使用 Glorot 初始化的模型没有学到任何东西。 这幅图是不是很熟悉?...这就是我在文章开始向你们展示的图形!使用 Xavier/Glorot 初始化训练的网络没有学到任何东西。 现在猜一下 Keras 中默认的初始化是哪一种? 没错!...在 Keras 中,卷积层默认是以 Glorot Uniform 分布进行初始化的: ? 所以如果我们将初始化方法改成 Kaiming Uniform 分布会怎么样呢?...结论 在这篇文章中,我们证明,初始化是模型中特别重要的一件事情,这一点你可能经常忽略。此外,文章还证明,即便像 Keras 这种卓越的库中的默认设置,也不能想当然拿来就用。

    2.9K30

    为何Keras中的CNN是有问题的,如何修复它们?

    在一个 22 层的 ReLU CNN 上使用 Glorot(蓝色)初始化和 Kaiming 的初始化方法进行训练时的对比。使用 Glorot 初始化的模型没有学到任何东西。 这幅图是不是很熟悉?...这就是我在文章开始向你们展示的图形!使用 Xavier/Glorot 初始化训练的网络没有学到任何东西。 现在猜一下 Keras 中默认的初始化是哪一种? 没错!...在 Keras 中,卷积层默认是以 Glorot Uniform 分布进行初始化的: ? 所以如果我们将初始化方法改成 Kaiming Uniform 分布会怎么样呢?...结论 在这篇文章中,我们证明,初始化是模型中特别重要的一件事情,这一点你可能经常忽略。此外,文章还证明,即便像 Keras 这种卓越的库中的默认设置,也不能想当然拿来就用。...v=s2coXdufOzE 原文地址:https://towardsdatascience.com/why-default-cnn-are-broken-in-keras-and-how-to-fix-them-ce295e5e5f2

    3K20

    小白学CNN以及Keras的速成

    开始学习CNN 在理解CNN之前,我们有必要先理解一下什么是神经网络,这样才能开始了解更高级的卷积神经网络。...今天,sherlock在这里给大家推荐一个学习材料,保证你能够快速入门cnn,出去装逼也能够和别人聊几句。 这个材料是什么呢,就是大名鼎鼎的standford的cs231n这门课程。...卷积层 了解完了基本的结构之后,我们就要了解cnn最重要的一个部分,也是最为创新的一个部分,卷积层。首先用一张图片来比较一下卷积网络到底创新在什么地方。 ?...3x3x3,然后我们将大方块中3x3x3的数字和小方块中的权重分别相乘相加,再加上一个偏差,就可以得到一个卷积的结果,可以抽象的写成Wx+b这种形式,这就是图上所显示的结果,然后我们可以设置小方块的滑动距离...卷积网络发展的特别迅速,最早是由Lecun提出来的,Lenet成为cnn的鼻祖,接下来他的学生Alex提出了层数更深的Alexnet,然后2013年又提出了VGGnet,有16层和19层两种,这些都只是在层数上面的加深

    75440

    CNN—pooling层的作用

    此处是个人见解:欢迎微信探讨:lp5319 1、使构建更深层次的网络变得可行; 2、使得filters获得更多的全局和contextual(上下文)信息; 3、使训练可行,也可以说使得训练变得更高效,主要是针对深层次的网络结构来说...; 4、使得 特征map大小和数量进行更好的选择(权衡)。...例如,就用输入到全连接层的前一层conv来说,特征map太大的话,特征数量就不易太多,通过pooling,使得特征map变小,特征map数量就可以更多。 (那么为什么要特征map更多呢?...答:因为每个特征map对应一个filters,特征map越多对应更多的filters,而不同的filters提取的是图像中不同方面的特征,也就是说filters越多对图像不同特征的提取越多。

    98750

    开发 | 小白学CNN以及Keras的速成

    二、开始学习CNN 在理解CNN之前,我们有必要先理解一下什么是神经网络,这样才能开始了解更高级的卷积神经网络。...今天,sherlock在这里给大家推荐一个学习材料,保证你能够快速入门cnn,出去装逼也能够和别人聊几句。 这个材料是什么呢,就是大名鼎鼎的standford的cs231n这门课程。...卷积层 了解完了基本的结构之后,我们就要了解cnn最重要的一个部分,也是最为创新的一个部分,卷积层。首先用一张图片来比较一下卷积网络到底创新在什么地方。 ?...3x3x3,然后我们将大方块中3x3x3的数字和小方块中的权重分别相乘相加,再加上一个偏差,就可以得到一个卷积的结果,可以抽象的写成Wx+b这种形式,这就是图上所显示的结果,然后我们可以设置小方块的滑动距离...卷积网络发展的特别迅速,最早是由Lecun提出来的,Lenet成为cnn的鼻祖,接下来他的学生Alex提出了层数更深的Alexnet,然后2013年又提出了VGGnet,有16层和19层两种,这些都只是在层数上面的加深

    1K60

    从卷积拆分和分组的角度看CNN模型的演化

    写在前面 如题,这篇文章将尝试从卷积拆分的角度看一看各种经典CNN backbone网络module是如何演进的,为了视角的统一,仅分析单条路径上的卷积形式。...个pointwise引入相同的group,同时(3\times 3) conv变成depthwise,也就是说3个卷积层都group了,这会阻碍不同channel间(分组间)的信息交流,所以在第一个group...rightarrow (M \times tM + K \times K \times tM + tM \times N) \t = 6 ] [y6h7x4yoxj.png] 小结 最后小结一下,早期的CNN...由一个个常规卷积层堆叠而成,而后,开始模块化,由一个个 module构成,module的演化,可以看成是不停地在常规卷积的计算量(FLOPS = K \times K \times M \times N...拆分:卷积核是个3 D 的tensor,可以在不同维度上进行拆分,行列可拆分,高也可拆分,还可以拆分成多段串联(类似SVD)。

    84730

    【小白学习Keras教程】四、Keras基于数字数据集建立基础的CNN模型

    Model compile & train 基本卷积神经网络(CNN) -CNN的基本结构:CNN与MLP相似,因为它们只向前传送信号(前馈网络),但有CNN特有的不同类型的层 「Convolutional...layer」:在一个小的感受野(即滤波器)中处理数据 「Pooling layer」:沿2维向下采样(通常为宽度和高度) 「Dense (fully connected) layer」:类似于MLP的隐藏层...import to_categorical 加载数据集 sklearn中的数字数据集 文档:http://scikit-learn.org/stable/auto_examples/datasets...激活层 与 MLP 中的激活层相同 一般情况下,也使用relu Doc: http://cs231n.github.io/assets/cnn/depthcol.jpeg model.add(Activation...Dense(全连接层) 卷积和池化层可以连接到密集层 文档:https://keras.io/layers/core/ # prior layer should be flattend to be connected

    55130

    基于Keras+CNN的MNIST数据集手写数字分类

    本文是学习github源码的笔记,源码链接:https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py 0.编程环境...3.数据观察 3.1 使用keras库中的方法加载数据 本文使用keras.datasets库的mnist.py文件中的load_data方法加载数据。...中的模型、层、损失函数、优化器。...第6行代码使用keras.model库的Sequential方法实例化模型对象; 第7、8行代码是模型中添加卷积层; 第9行代码是模型中添加最大池化层; 第10行代码是模型中的数据矩阵展平; 第...11行代码是模型中添加dropout操作; 第12行代码是模型中添加全连接层; 第13行代码是模型中添加dropout操作; 第14行代码是模型中添加全连接层,且使用relu作为激活函数,即最终分类结果

    2.4K20

    深度学习图像识别项目(中):Keras和卷积神经网络(CNN)

    现在我们已经下载和组织了我们的图像,下一步就是在数据之上训练一个卷积神经网络(CNN)。 我会在今天文章中向你展示如何使用Keras和深入的学习来训练你的CNN。...我们的Keras和CNN架构 ?...从代码块中可以看到,我们也将在我们的网络体系结构中使用丢包。Dropout的工作原理是将节点从当前层随机断开连接 到 下一层。...这个在训练批次中随机断开的过程有助于自然地在模型中引入冗余 – 层中没有任何单个节点负责预测某个类,对象,边或角。...该对象确保我们不必在希望使用Keras CNN的脚本中对我们的类标签进行硬编码。 最后,我们可以绘制我们的训练和损失的准确性: ?

    9.3K62

    keras中的损失函数

    损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法: model.compile(loss='mean_squared_error...', optimizer='sgd') 或者 from keras import losses model.compile(loss=losses.mean_squared_error, optimizer...TensorFlow/Theano张量,其shape与y_true相同 实际的优化目标是所有数据点的输出数组的平均值。...(即,如果你有10个类,每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其他均为0)。...为了将 整数目标值 转换为 分类目标值,你可以使用Keras实用函数to_categorical: from keras.utils.np_utils import to_categorical categorical_labels

    2.1K20

    keras中的数据集

    数据在深度学习中的重要性怎么说都不为过,无论是训练模型,还是性能调优,都离不开大量的数据。有人曾经断言中美在人工智能领域的竞赛,中国将胜出,其依据就是中国拥有更多的数据。...具体说来,keras.datasets模块包含了加载和获取流行的参考数据集的方法。...通过这些数据集接口,开发者不需要考虑数据集格式上的不同,全部由keras统一处理,下面就来看看keras中集成的数据集。...注意 keras.datasets模块包含了从网络下载数据的功能,下载后的数据集保存于 ~/.keras/datasets/ 目录。因为这些数据集来源各有不同,有些需要访问外国网站才能访问。...出于方便起见,单词根据数据集中的总体词频进行索引,这样整数“3”就是数据中第3个最频繁的单词的编码。

    1.8K30

    基于keras平台CNN神经网络模型的服装识别分析

    p=8493 在许多介绍图像识别任务的介绍中,通常使用着名的MNIST数据集。但是,这些数据存在一些问题: 1.太简单了。...例如,一个简单的MLP模型可以达到99%的准确度,而一个2层CNN可以达到99%的准确度。 2.它被过度使用。从字面上看,每台机器学习入门文章或图像识别任务都将使用此数据集作为基准。...我也试图用keras来对这个数据进行基准测试。keras是构建深度学习模型的高级框架,在后端选择TensorFlow,Theano和CNTK。它很容易安装和使用。...对于我的应用程序,我使用了CNTK后端。  在这里,我将以两个模型为基准。一种是层结构为256-512-100-10的MLP,另一种是类VGG的CNN。 ...在keras中构建这样一个模型是非常自然和容易的: 这个模型有150万个参数。

    65200
    领券