首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    出海业务网络加速方案技术能力详解

    导语|随着出海业务的持续发展,各出海业务场景对于网络的要求越来越高。本课程针对出海业务的网络加速方案,进行腾讯云全球应用加速技术能力详解。全剧应用加速依赖全球节点之间的高速通道、转发集群及智能路由技术,实现各地用户的就近接入,通过高速通道直达源站区域,帮助业务解决全球用户访问卡顿或者延迟过高的问题。 一、4  腾讯云网络加速总体技术架构体 1 腾讯云云产品全景图 腾讯云实际上在整个的公有云市场当中,现在已经是头部的企业,有一个比较大的市场份额以及我们现在从整个公有云不同的方向。本次分享主要是从网络方向上为大

    01

    【压缩率3000%】上交大ICCV:精度保证下的新型深度网络压缩框架

    【新智元导读】上海交通大学人工智能实验室的研究人员提出了一种新的方法,能够在保证网络模型精度的前提下对深度网络进行压缩。相关论文已被ICCV 2017接收,由上海交通大学人工智能实验室李泽凡博士实现,倪冰冰教授,张文军教授,杨小康教授,高文院士指导。 随着人工智能在各个领域的应用中大放异彩,深度学习已经成为街头巷尾都能听到的词汇。然而,网络越来越深,数据越来越大,训练越来越久,如何在保证准确率的情况下加速网络,甚至让网络在CPU或者移动设备上进行训练与测试,就变成了迫在眉睫的问题。 上海交通大学人工智能实验

    06

    DPDK加速FPGA支持,强强联手助力数据中心网络加速

    DPDK在专注数据面报文处理的同时,一直紧跟着网络发展的脉搏以开放的姿态融合不断涌现的各种新的网络设备。从最初的普通网卡,到集成虚拟化和交换功能的高级网卡,再到各种网络SoC(片上系统)设备,到现在最热的基于FPGA的Smart NIC,DPDK一直走在软件定义的网络技术发展的最前沿。近年来,数据中心异构化的趋势出现,基于云的数据中心如何使用加速器来进行存储,网络以及人工智能的加速,成为炙手可热的话题,在刚结束的APNET’18研讨会上,华为与腾讯都分享了技术方向与实践演进过程,基于Linux Foundation的开源项目,对这种架构的支持,在软件的持续性与高质量保证上至关重要。

    03

    算法卷不动了,最后一个值得卷的百万年薪赛道!

    众所周知,深度神经网络模型被广泛应用在图像分类、物体检测,目标跟踪等计算机视觉任务中,并取得了巨大成功。 随着不同场景的需求变得更加多样,越来越多的IoT设备和场景需要与数据采集点以最接近的低时延来进行决策和操作;另外IoT物联设备生成的数据量通常很大,由于运营成本、时间和隐私方面的考虑,移动和存储所有生成的数据不太可行。 AI技术的一个趋势是在设备端上部署高性能的神经网络模型,并在真实场景中实时运行。如移动端/嵌入式设备,这些设备的特点是内存资源少,处理器性能不高,功耗受限,这使得目前精度最高的模型根本

    02

    【ARM攒机指南——AI篇】5大千万级设备市场技术拆解

    作者:重走此间路 编辑:闻菲 【新智元导读】单做算法无法挣钱,越来越多的公司都开始将核心算法芯片化争取更多市场和更大利益,一时间涌现出AI芯片无数。与CPU,GPU这样的通用芯片不同,终端AI芯片往往针对具体应用,能耗规格也千差万别。本文立足技术分析趋势,总结深度学习最有可能落地的5大主流终端市场——个人终端(手机,平板),监控,家庭,机器人和无人机,汽车,以及这些终端市场AI芯片的现状及未来。小标题以及着重部分是新智元转载时编辑增加,点击“阅读原文”了解更多。 近一年各种深度学习平台和硬件层出不穷,各种x

    06
    领券