首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于R统计软件的三次样条和平滑样条模型数据拟合及预测

我们通过应用基础函数来变换变量  并使用这些变换后的变量拟合模型, 向模型添加非线性, 使样条曲线能够拟合更平滑 。...datasetagelims<-range(age)#Generating Test Dataage.grid<-seq(from=agelims[1], to = agelims[2])  三次样条    R中使用函数拟合三次样条...16  绘制回归线  上图显示了三次样条曲线的平滑和局部效果。...平滑样条线  我们在平滑样条曲线中的目的是通过添加粗糙度最小化误差函数 。 现在我们可以注意到,红线(即“平滑样条线”)更加摇摆不定,并且更灵活地拟合数据。这可能是由于高度的自由度所致。...实施交叉验证以选择λ值并实施平滑样条线: fit2## Call:## smooth.spline(x = age, y = wage, cv = TRUE)## ## Smoothing Parameter

2.3K00

Python用偏最小二乘回归Partial Least Squares,PLS分析桃子近红外光谱数据可视化

Y) # 将数据拟合到PLS模型中 # 交叉验证y_cv = cros......y, cv=10) # 用10折交叉验证计算模型性能 # 计算得分score = r2_score(y,v) # 计算R2...如上所述,我们想要运行一个具有可变组分数的偏最小二乘回归,并在交叉验证中测试其性能。实际上,我们想要找到最小化均方误差的组件数。让我们为此编写一个函数。...    score_c = r2......e(y, y_cv)     # 计算校准和交叉验证的均方误差    mse_c = mean_......y, y_cv)      # 绘制回归图和评估指标...其次,它找到最小化均方误差的组件数,并使用该值再次运行偏最小二乘回归。在第二次计算中,计算了一堆指标并将其打印出来。让我们通过将最大组件数设置为40来运行此函数。...., plot_components=True) 第一个图表是均方误差作为组件数的函数。建议最小化均方误差的组件数在该图中突出显示。第二个图表是实际的回归图,包括预测指标。

73400
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    MATLAB偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

    为了充分拟合数据,可能需要十个成分,但可以使用此拟合的诊断来选择具有更少成分的更简单模型。例如,选择成分数量的一种快速方法是将因变量中解释的方差百分比绘制为成分数量的函数。...在实践中,在选择成分数量时可能需要更加谨慎。例如,交叉验证是一种广泛使用的方法,稍后将在本示例中进行说明。目前,上图显示具有两个成分的PLSR解释了观察到的大部分方差y。计算双组分模型的拟合因变量。...然而,使用相同数量的成分,PLSR做得更好。实际上,观察上图中拟合值的水平分布,使用两个分量的PCR几乎不比使用常数模型好。回归的r方值证实了这一点。...它通过不重复使用相同的数据来拟合模型和估计预测误差来避免过度拟合数据。因此,预测误差的估计不会乐观地向下偏差。 pls可以选择通过交叉验证来估计均方预测误差(MSEP),在这种情况下使用10倍CV。...plsreg(X,y,10,'CV',10); 对于PCR,crossval结合用于计算PCR的平方误差之和,可以再次使用10倍交叉验证来估计MSEP。

    41000

    偏最小二乘回归(PLSR)和主成分回归(PCR)

    为了充分拟合数据,可能需要十个组件,但可以使用此拟合的诊断来选择具有更少组件的更简单模型。例如,选择组件数量的一种快速方法是将响应变量中解释的方差百分比绘制为组件数量的函数。 ?...在实践中,在选择组件数量时可能需要更加谨慎。例如,交叉验证是一种广泛使用的方法,稍后将在本示例中进行说明。目前,上图显示具有两个成分的PLSR解释了观察到的大部分方差y。计算双组分模型的拟合响应值。...交叉验证是一种更加统计上合理的方法,用于选择PLSR或PCR中的组分数量。它通过不重复使用相同的数据来适应模型和估计预测误差来避免过度拟合数据。因此,预测误差的估计不会乐观地向下偏差。...plsregress 可以选择通过交叉验证来估计均方预测误差(MSEP),在这种情况下使用10倍CV。...[X1,Y1,Xs,Ys,β,pctVar,PLSmsep] = plsregress(X,y,10,'CV',10); 对于PCR,crossval结合用于计算PCR的平方误差之和的简单函数,可以再次使用

    2.3K10

    高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据|附代码数据

    #X已经被标准化和中心化了 首先,输出显示了数据维度和使用的拟合方法。在本例中,是基于SVD的主成分PC计算。summary()函数还提供了使用不同数量的成分在预测因子和响应中解释方差的百分比。...如果我们使用相同的数据来拟合和测试模型,我们会得到有偏见的结果。 在开始之前,我们使用set.seed()函数来为R的随机数生成器设置一个种子,这样我们就能得到与下面所示完全相同的结果。...对于任何广义线性模型,CVk估计值都可以用cv.glm()函数自动计算出来。 8 例子: PC回归的评估 我们从PC回归开始,使用k-fold交叉验证寻找使MSE最小的最佳PC数。...summary(pcr_cv) 我们可以绘制每个成分数量的预测均方根误差(RMSEP),如下所示。...要在R中取不同基数的对数,你可以指定log的基数=参数,或者使用函数log10(x)和log2(x)分别代表基数10和2︎ ---- 本文摘选 《 R语言高维数据惩罚回归方法:主成分回归PCR、岭回归

    81200

    高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据

    #X已经被标准化和中心化了 首先,输出显示了数据维度和使用的拟合方法。在本例中,是基于SVD的主成分PC计算。summary()函数还提供了使用不同数量的成分在预测因子和响应中解释方差的百分比。...如果我们使用相同的数据来拟合和测试模型,我们会得到有偏见的结果。 在开始之前,我们使用set.seed()函数来为R的随机数生成器设置一个种子,这样我们就能得到与下面所示完全相同的结果。...对于任何广义线性模型,CVk估计值都可以用cv.glm()函数自动计算出来。 8 例子: PC回归的评估 我们从PC回归开始,使用k-fold交叉验证寻找使MSE最小的最佳PC数。...summary(pcr_cv) 我们可以绘制每个成分数量的预测均方根误差(RMSEP),如下所示。...要在R中取不同基数的对数,你可以指定log的基数=参数,或者使用函数log10(x)和log2(x)分别代表基数10和2︎ ---- 本文摘选《R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso

    2.3K30

    MATLAB偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

    为了充分拟合数据,可能需要十个成分,但可以使用此拟合的诊断来选择具有更少成分的更简单模型。例如,选择成分数量的一种快速方法是将因变量中解释的方差百分比绘制为成分数量的函数。...在实践中,在选择成分数量时可能需要更加谨慎。例如,交叉验证是一种广泛使用的方法,稍后将在本示例中进行说明。目前,上图显示具有两个成分的PLSR解释了观察到的大部分方差y。计算双组分模型的拟合因变量。...然而,使用相同数量的成分,PLSR做得更好。实际上,观察上图中拟合值的水平分布,使用两个分量的PCR几乎不比使用常数模型好。回归的r方值证实了这一点。...它通过不重复使用相同的数据来拟合模型和估计预测误差来避免过度拟合数据。因此,预测误差的估计不会乐观地向下偏差。 pls可以选择通过交叉验证来估计均方预测误差(MSEP),在这种情况下使用10倍CV。...plsreg(X,y,10,'CV',10); 对于PCR,crossval结合用于计算PCR的平方误差之和,可以再次使用10倍交叉验证来估计MSEP。

    43800

    高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据|附代码数据

    #X已经被标准化和中心化了 首先,输出显示了数据维度和使用的拟合方法。在本例中,是基于SVD的主成分PC计算。summary()函数还提供了使用不同数量的成分在预测因子和响应中解释方差的百分比。...如果我们使用相同的数据来拟合和测试模型,我们会得到有偏见的结果。 在开始之前,我们使用set.seed()函数来为R的随机数生成器设置一个种子,这样我们就能得到与下面所示完全相同的结果。...对于任何广义线性模型,CVk估计值都可以用cv.glm()函数自动计算出来。 8 例子: PC回归的评估 我们从PC回归开始,使用k-fold交叉验证寻找使MSE最小的最佳PC数。...summary(pcr_cv) 我们可以绘制每个成分数量的预测均方根误差(RMSEP),如下所示。...这可能与你所习惯的符号(ln())不同。要在R中取不同基数的对数,你可以指定log的基数=参数,或者使用函数log10(x)和log2(x)分别代表基数10和2︎

    66700

    高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据|附代码数据

    #X已经被标准化和中心化了 首先,输出显示了数据维度和使用的拟合方法。在本例中,是基于SVD的主成分PC计算。summary()函数还提供了使用不同数量的成分在预测因子和响应中解释方差的百分比。...如果我们使用相同的数据来拟合和测试模型,我们会得到有偏见的结果。 在开始之前,我们使用set.seed()函数来为R的随机数生成器设置一个种子,这样我们就能得到与下面所示完全相同的结果。...对于任何广义线性模型,CVk估计值都可以用cv.glm()函数自动计算出来。 8 例子: PC回归的评估 我们从PC回归开始,使用k-fold交叉验证寻找使MSE最小的最佳PC数。...summary(pcr_cv) 我们可以绘制每个成分数量的预测均方根误差(RMSEP),如下所示。...这可能与你所习惯的符号(ln())不同。要在R中取不同基数的对数,你可以指定log的基数=参数,或者使用函数log10(x)和log2(x)分别代表基数10和2︎

    50800

    偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

    为了充分拟合数据,可能需要十个成分,但可以使用此拟合的诊断来选择具有更少成分的更简单模型。例如,选择成分数量的一种快速方法是将因变量中解释的方差百分比绘制为成分数量的函数。...在实践中,在选择成分数量时可能需要更加谨慎。例如,交叉验证是一种广泛使用的方法,稍后将在本示例中进行说明。目前,上图显示具有两个成分的PLSR解释了观察到的大部分方差y。计算双组分模型的拟合因变量。...过于拟合当前数据会导致模型不能很好地推广到其他数据,并对预期误差给出过度乐观的估计。交叉验证是一种更加统计上合理的方法,用于选择PLSR或PCR中的成分数量。...它通过不重复使用相同的数据来拟合模型和估计预测误差来避免过度拟合数据。因此,预测误差的估计不会乐观地向下偏差。pls可以选择通过交叉验证来估计均方预测误差(MSEP),在这种情况下使用10倍CV。...plsreg(X,y,10,'CV',10);对于PCR,crossval结合用于计算PCR的平方误差之和,可以再次使用10倍交叉验证来估计MSEP。

    1.3K30

    MATLAB偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

    为了充分拟合数据,可能需要十个成分,但可以使用此拟合的诊断来选择具有更少成分的更简单模型。例如,选择成分数量的一种快速方法是将因变量中解释的方差百分比绘制为成分数量的函数。...在实践中,在选择成分数量时可能需要更加谨慎。例如,交叉验证是一种广泛使用的方法,稍后将在本示例中进行说明。目前,上图显示具有两个成分的PLSR解释了观察到的大部分方差y。计算双组分模型的拟合因变量。...过于拟合当前数据会导致模型不能很好地推广到其他数据,并对预期误差给出过度乐观的估计。交叉验证是一种更加统计上合理的方法,用于选择PLSR或PCR中的成分数量。...它通过不重复使用相同的数据来拟合模型和估计预测误差来避免过度拟合数据。因此,预测误差的估计不会乐观地向下偏差。pls可以选择通过交叉验证来估计均方预测误差(MSEP),在这种情况下使用10倍CV。...plsreg(X,y,10,'CV',10);对于PCR,crossval结合用于计算PCR的平方误差之和,可以再次使用10倍交叉验证来估计MSEP。

    1.2K00

    机器学习入门:偏差和方差

    利用线性回归算法得到的线不能为了包含所有的训练集数据点就过于弯曲,因此有时无法捕捉到准确的关系。这叫做偏差。在数学上,在线性回归方程中得到的截距是偏差。 我为什么这么说?...欠拟合模型具有较低的R-squared(由自变量引起的目标方差量)。 欠拟合也可以通过首先考虑如何捕捉最佳拟合线/平面来理解。最佳拟合直线/平面捕捉目标和自变量之间的关系。...在这样一个场景中,我们创建了一条通过所有数据点的曲线,并且可以显示自变量和因变量之间的现有关系,那么模型中就不会存在偏差。 理解方差 ? 对训练数据过度拟合的模型将导致一种新的现象,称为“方差”。...在计算训练数据(图中还没有测试数据)的误差时,我们观察到: 模型1:在训练数据上对模型进行验证,结果表明误差较大 模型2:在训练数据上对模型进行验证,结果表明误差较小 现在,让我们引入训练数据,来理解方差...Leave-One-Out CV:Leave-One-Out CV的工作原理类似于K-Fold CV,但它将流程提升到了一个新的高度,因为它使用训练数据中的每一个数据点来计算交叉验证结果。

    99220

    【机器学习】模型选择的一些基本思想和方法

    个人更加直观的理解是,统计学习侧重于从概率分布来描述数据生成机制,除了预测之外,还关心结果(参数假设、误差分布假设)的检验,而机器学习侧重于从函数拟合角度来描述数据生成机制,基本目的就是为了拟合和预测,...,但是模型选择不涉及算法中的参数,仅涉及模型目标函数中的调整参数α。...数学语言叙述如下:记τ:{1,…,N}→{1,…,K}是一个划分函数,表示随机地将第i个观测分配{1,…,K}中某个指标;记f^−k(x)表示去除第k部分数据训练所得的模型,则预测误差的交叉验证估计(CV...GCV 由于计算CV是一个密集计算的模型选择法,即使可以利用并行计算来提高模型选择的效率,但是如果能够找到无需重复计算的替代方法,那么实际应用中,人们可能更倾向于使用这种模型选择方法。...实际使用中,AIC做模型选择更倾向于选择比真实模型更多参数的模型,容易低估“样本外误差”,有**过拟合的倾向**。

    4.6K90

    r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现|附代码数据

    该算法非常快,并且可以利用输入矩阵中的稀疏性 x。它适合线性,逻辑和多项式,泊松和Cox回归模型。可以从拟合模型中做出各种预测。 它也可以拟合多元线性回归。...用户可以加载自己的数据,也可以使用工作空间中保存的数据。 该命令 从此保存的R数据中加载输入矩阵 x 和因向量 y。 我们拟合模型 glmnet。...点击标题查阅往期内容 R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析 01 02 03 04 glmnet 如果我们只是输入对象名称或使用print 函数,则会显示每个步骤的路径...并行计算也受 cv.glmnet。为我们在这里给出一个简单的比较示例。...函数 cv.glmnet 可用于计算Cox模型的k折交叉验证。 拟合后,我们可以查看最佳λ值和交叉验证的误差图,帮助评估我们的模型。 如前所述,图中的左垂直线向我们显示了CV误差曲线达到最小值的位置。

    3.1K20

    R语言进行支持向量机回归SVR和网格搜索超参数优化|附代码数据

    在这篇文章中,我将展示如何使用R语言来进行支持向量回归SVR 我们将首先做一个简单的线性回归,然后转向支持向量回归,这样你就可以看到两者在相同数据下的表现。...01 02 03 04 第1步:在R中进行简单的线性回归 下面是CSV格式的相同数据,我把它保存在regression.csv文件中。 我们现在可以用R来显示数据并拟合直线。...对于每个数据点Xi,模型都会做出预测Y^i,在图上显示为一个红色的十字。与之前的图表唯一不同的是,这些点没有相互连接。 为了衡量我们的模型效果,我们计算它的误差有多大。...请注意,我们调用了svm函数(而不是svr!),这是因为这个函数也可以用来用支持向量机进行分类。如果该函数检测到数据是分类的(如果变量是R中的一个因子),它将自动选择SVM。 代码画出了下面的图。...第四步:调整你的支持向量回归模型 为了提高支持向量回归的性能,我们将需要为模型选择最佳参数。 在我们之前的例子中,我们进行了ε-回归,我们没有为ε(ϵ)设置任何值,但它的默认值是0.1。

    78520

    OSCA单细胞数据分析笔记7—Feature selection

    具体计算结果如下--bio = total - tech。...引申两个参数: 拟合中的可能存在的过拟合问题:这里主要针对基因表达量高,且方差大的少数点(基因)。造成曲线的膨胀,很大概率上高估了技术误差,拟合曲线表现为高跷的尾巴。...可通过modelGeneVar()函数的density.weights参数设置(默认为T)。如下图,一般红线的拟合情况是我们期望看到的(density.weights=FALSE) ?...具体实现是在拟合函数中,设置block参数指定批次的设计 modelGenemodelGeneVar(sce.416b, "ERCC", block=sce.416b$block) ?...如果数据集中没有外参转录本信息,那么可使用泊松分布近似拟合技术误差曲线。 相关函数如下,具体使用可参考原教程。

    1.9K41

    R语言进行支持向量机回归SVR和网格搜索超参数优化

    p=23305 在这篇文章中,我将展示如何使用R语言来进行支持向量回归SVR。 我们将首先做一个简单的线性回归,然后转向支持向量回归,这样你就可以看到两者在相同数据下的表现。...第1步:在R中进行简单的线性回归 下面是CSV格式的相同数据,我把它保存在regression.csv文件中。 ? 我们现在可以用R来显示数据并拟合直线。...对于每个数据点Xi,模型都会做出预测Y^i,在图上显示为一个红色的十字。与之前的图表唯一不同的是,这些点没有相互连接。 为了衡量我们的模型效果,我们计算它的误差有多大。...在机器学习中,衡量误差的一个常见方法是使用均方根误差(RMSE),所以我们将使用它来代替。 为了计算RMSE,我们取其平方根,我们得到RMSE ?...如果该函数检测到数据是分类的(如果变量是R中的一个因子),它将自动选择SVM。 代码画出了下面的图。 ? 这一次的预测结果更接近于真实的数值 ! 让我们计算一下支持向量回归模型的RMSE。

    5.1K30
    领券