首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

我如何确定一个prolog的“复合术语”里面是否有一个特定的“原子”?

在Prolog中,复合术语是由一个函数符号和一组参数组成的。要确定一个复合术语中是否包含特定的原子,可以使用以下步骤:

  1. 首先,检查复合术语的函数符号是否与目标原子相匹配。函数符号是复合术语的第一个元素,表示该复合术语的类型或操作。
  2. 如果函数符号与目标原子匹配,进一步检查复合术语的参数列表。参数列表是复合术语的剩余部分,包含了复合术语的参数或子项。
  3. 递归地检查参数列表中的每个元素,以确定是否存在目标原子。如果参数是一个复合术语,则重复步骤1和步骤2。
  4. 如果在参数列表中找到了目标原子,返回true;否则,返回false。

需要注意的是,Prolog中的复合术语可以是任意嵌套的,因此在递归检查参数列表时需要考虑到所有可能的层级。

以下是一个示例代码片段,演示如何在Prolog中实现上述步骤:

代码语言:txt
复制
contains_atom(Term, Atom) :-
    Term =.. [_|Args],  % 获取复合术语的参数列表
    member(Arg, Args),  % 遍历参数列表
    (   Arg = Atom  % 如果参数是目标原子,返回true
    ;   compound(Arg), contains_atom(Arg, Atom)  % 如果参数是复合术语,递归检查
    ).

在这个示例中,contains_atom/2谓词用于确定一个复合术语中是否包含特定的原子。它使用了=../2操作符来将复合术语分解为函数符号和参数列表,并使用member/2谓词遍历参数列表。如果找到了目标原子或递归地在参数列表中找到了目标原子,谓词返回true;否则返回false。

请注意,以上示例代码是一种通用的方法,适用于任何Prolog系统。对于腾讯云相关产品和产品介绍链接地址,由于不提及具体品牌商,无法提供相关链接。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Brief. Bioinform. | 蛋白质-小分子复合物结合强度和配体结合姿态一体预测的深度学习框架

    基于结构的药物设计中一项重要的任务是预测配体在靶体口袋中的结合姿态,然而当前已报道的打分函数通常受限于精度,或是局限于单一的输出,比如仅预测构象姿势的偏差(RMSD),结合强度(pKd)或是基于残基-原子间距离分布的统计势。本文介绍的是近期发表在国际知名生物信息学期刊《Briefings in Bioinformatics》上的一篇题为《A New Paradigm for Applying Deep Learning to Protein-Ligand Interaction Prediction》的研究论文。该论文提出了一种同时预测蛋白质-配体复合物结合强度及配体结合姿态偏差RMSD的打分框架IGModel。论文的第一作者是智峪生科助理研究员王泽琛(山东大学物理学院博士在读),共同通讯作者是郑良振博士(智峪生科-深圳先进院联合实验室)和李伟峰教授(山东大学物理学院)。

    01

    改变开发者编码思维的六种编程范式

    译者注:本文介绍了六种编程范式,提到了不少小众语言,作者希望借此让大家更多的了解一些非主流的编程范式,进而改变对编程的看法。以下为译文: 时不时地,我会发现一些编程语言所做的一些与众不同的事情,也因此改变了我对编码的看法。在本文,我将把这些发现分享给大家。 这不是“函数式编程将改变世界”的那种陈词滥调的博客文章,这篇文章列举的内容更加深奥。我敢打赌大部分读者都没有听说过下面这些语言和范式,所以我希望大家能像我当初一样,带着兴趣去学习这些新概念,并从中找到乐趣。 注:对于下面讲到的大多数语言,我拥有的经验

    010

    NeurIPS 2021 | 通过动态图评分匹配预测分子构象

    从 2D 分子图中预测稳定的 3D 构象一直是计算化学中的一个长期挑战。而最近,机器学习方法取得了相比传统的实验和基于物理的模拟方法更优异的成绩。这些方法主要侧重于模拟分子图上相邻原子之间的局部相互作用,而忽略了非键合原子之间的长程相互作用。然而,这些未成键的原子在 3D 空间中可能彼此接近,模拟它们的相互作用对于准确确定分子构象至关重要,尤其是对于大分子和多分子复合物。在本文中,作者提出了一种称为动态图评分匹配 (DGSM) 的分子构象预测新方法,该方法通过在训练和推理过程中根据原子之间的空间接近度动态构建原子之间的图结构来对局部和远程相互作用进行建模。具体来说,DGSM根据动态构建的图,使用评分匹配方法直接估计原子坐标对数密度的梯度场。可以以端到端的方式有效地训练整个框架。多项实验表明,DGSM 的表现远超该领域一流水平,并且能够为更广泛的化学系统生成构象,例如蛋白质和多分子复合物。

    02

    JCIM| 通过以蛋白质结合位点3D信息为条件的分子生成模型进行从头分子设计

    今天给大家介绍广州再生医学与健康实验室发表在Journal of Chemical Information and Modeling上的一篇关于利用分子生成模型进行从头分子设计的文章。该文提出了一种新的生成模型,该模型通过将蛋白质结合口袋的3D结构信息整合到条件RNN(cRNN)模型中,以控制类药分子的生成。在该模型中,通过粗粒度策略有效表征蛋白质结合口袋,其中口袋的3D信息可以由组成结合口袋原子的的粗粒度库仑矩阵(EGCM)的排序特征值表示。该文使用EGCM方法以及DeeplyTough方法来训练cRNN模型并评估其性能。实验结果表明,基于蛋白质结合口袋信息约束下训练的模型与正常RNN模型相比,生成的化合物与原始X射线结合配体具有更高相似性且对接分数更好。本文的结果证明了受控分子生成模型在靶向分子生成和类药化学空间引导探索方面的潜在应用。

    04

    J. Chem. Inf. Model. | 基于序列和基于结构的蛋白质-配体相互作用机器学习方法

    开发新药既昂贵又耗时。准确预测药物和靶标之间的相互作用可能会改变药物的发现方式。基于机器学习的蛋白质-配体相互作用预测已经显示出巨大的潜力。本文重点对基于序列和基于结构的蛋白质-配体相互作用机器学习方法进行了总结。因此,本文首先概述了该领域应用的数据集,以及用于表示蛋白质和配体的各种方法。然后,利用基于序列和基于结构的分类标准对经典机器学习模型和深度学习模型进行分类和总结,用于蛋白质-配体相互作用的研究。此外,还提出了这些模型的评价方法和可解释性。此外,深入探讨了蛋白质-配体相互作用模型在药物研究中的各种应用。最后,讨论了该领域目前面临的挑战和未来的发展方向。

    01

    多尺度生成扩散模型预测蛋白-配体复合物结构的动态骨架

    今天给大家介绍的是来自加州理工大学Zhuoran Qiao和NVIDIA团队发表在arxiv上的预印本《DYNAMIC-BACKBONE PROTEIN-LIGAND STRUCTURE PREDICTION WITH MULTISCALE GENERATIVE DIFFUSION MODELS》。作者提出了一种名为NeuralPLexer的扩散模型框架,这一框架能够利用蛋白的骨架模板以及分子图的输入,快速预测蛋白-配体复合物的结构以及它们的波动。另外,本文发现当NeuralPLexer应用于蛋白质折叠因为配体存在而显著改变的系统时,这一框架可以完善类结合态蛋白的结构。这一结果表明,数据驱动的方法可以捕获蛋白质和小分子实体之间的结构协作性,为新药物靶点的计算识别和功能小分子和配体结合蛋白的端到端可微设计展示了方向和前景。

    02

    Nature | AlphaFold 3 预测了所有生命分子的结构和相互作用

    AlphaFold 2的问世引发了蛋白质结构及其相互作用建模的革命,使得在蛋白质建模和设计领域有了广泛的应用。 Google DeepMind and Isomorphic Labs团队在5月8日Nature的最新论文“Accurate structure prediction of biomolecular interactions with AlphaFold 3”描述了最新推出的AlphaFold 3 模型,采用了一个大幅更新的基于扩散的架构,能够联合预测包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物的结构。新的 AlphaFold 模型在许多先前专门工具上显著提高了准确性:在蛋白质-配体相互作用方面比最先进的对接工具准确得多,比核酸特异性预测器在蛋白质-核酸相互作用方面具有更高的准确性,比 AlphaFold-Multimer v2.3.在抗体-抗原预测准确性方面显著更高。这些结果表明,在单一统一的深度学习框架内实现生物分子空间的高准确建模是可能的。

    01

    常识性概念图谱建设以及在美团场景中的应用

    在自然语言处理中,我们经常思考,怎么样才能做好自然语言的理解工作。对我们人类来说,理解某一个自然语言的文本信息,通常都是通过当前的信息,关联自己大脑中存储的关联信息,最终理解信息。例如“他不喜欢吃苹果,但是喜欢吃冰淇淋”,人在理解的时候关联出大脑中的认知信息:苹果,甜的,口感有点脆;冰淇淋,比苹果甜,口感软糯、冰凉,夏天能解暑;小孩更喜欢吃甜食和冰淇淋。所以结合这样的知识,会推理出更喜欢冰淇淋的若干原因。但是现在很多自然语言理解的工作还是聚焦在信息的层面,现在的理解工作类似于一个贝叶斯概率,从已知的训练文本中寻找符合条件的最大化文本信息。

    05
    领券