首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python pandas十分钟教程

import pandas as pd pandas在默认情况下,如果数据集中有很多列,则并非所有列都会显示在输出显示中。...,使用代码如下: pd.read_csv("Soils.csv") pd.read_excel("Soils.xlsx") 在括号内 "Soils.csv"是上传的数据文件名,一般如果数据文件不在当前工作路径...如果读取的文件没有列名,需要在程序中设置header,举例如下: pd.read_csv("Soils.csv",header=None) 如果碰巧数据集中有日期时间类型的列,那么就需要在括号内设置参数...基本使用方法如下: df.loc[:,['Contour']]:选择'Contour'列的所有数据。 其中单冒号:选择所有行。 在逗号的左侧,您可以指定所需的行,并在逗号的右侧指定列。...如果要将数据输出到由制表符分隔的csv文件,请使用以下代码。 '\t'表示您希望它以制表符分隔。

9.8K50

Python截取Excel数据并逐行相减、合并文件

首先,我们来明确一下本文的具体需求。现有一个文件夹,其中有大量的Excel表格文件(在本文中我们就以.csv格式的文件为例),且每一个文件的名称都表示该文件对应的数据源点的ID;如下图所示。   ...其中,每一个Excel表格文件都有着如下图所示的数据格式;其中的第1列,是表示天数的时间数据,每一行数据之间的时间跨度是8天。   ...我们希望实现的是,首先对于这个文件夹中的每一个文件,都截取出其中天数在2022001(也就是2022年第1天)及之后的部分;随后,对截取出来的数据的各列(除了第1列,因为第1列是表示时间的数据)加以逐行求差...,提取出一些关键信息,作为新的列放在后面(我这里是希望生产一个深度神经网络回归的训练数据,所以就需要组合各类的数据)。...此外,我们还有2个文件夹,其中有着同样大量、同样文件命名规则、同样数据格式的数据,我们希望将这2个文件夹中与当前文件夹中每一个同名的文件中的同一天的数据合并。

15610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python求取Excel指定区域内的数据最大值

    本文介绍基于Python语言,基于Excel表格文件内某一列的数据,计算这一列数据在每一个指定数量的行的范围内(例如每一个4行的范围内)的区间最大值的方法。   ...已知我们现有一个.csv格式的Excel表格文件,其中有一列数据,我们希望对其加以区间最大值的计算——即从这一列的数据部分(也就是不包括列名的部分)开始,第1行到第4行之间的最大值、第5行到第8行的最大值...,所有函数名称是eight,大家理解即可),接受两个参数,分别为输入文件路径excel_file,以及要计算区间最大值对应的那一列的列名column_name。   ...在函数中,我们首先读取文件,将数据保存到df中;接下来,我们从中获取指定列column_name的数据,并创建一个空列表max_values,用于保存每个分组的最大值。...最后,通过rdf.to_csv():将这个rdf保存为一个新的.csv格式文件,并设置index=False以不保存索引列。   执行上述代码,我们即可获得结果文件。

    21120

    Python批量复制Excel中给定数据所在的行

    本文介绍基于Python语言,读取Excel表格文件数据,并基于其中某一列数据的值,将这一数据处于指定范围的那一行加以复制,并将所得结果保存为新的Excel表格文件的方法。   ...现有一个Excel表格文件,在本文中我们就以.csv格式的文件为例;其中,如下图所示,这一文件中有一列(也就是inf_dif这一列)数据比较关键,我们希望对这一列数据加以处理——对于每一行,如果这一行的这一列数据的值在指定的范围内...首先,我们需要导入所需的库;接下来,我们使用pd.read_csv()函数,读取我们需要加以处理的文件,并随后将其中的数据存储在名为df的DataFrame格式变量中。...随后,我们使用df.iterrows()遍历原始数据的每一行,其中index表示行索引,row则是这一行具体的数据。接下来,获取每一行中inf_dif列的值,存储在变量value中。   ...此时,我们即可基于我们的实际需求,对变量value的数值加以判断;在我这里,如果value的值小于等于-0.1或大于等于0.1,则就开始对这一行加以复制;因为我这里需要复制的次数比较多,因此就使用range

    32420

    最全面的Pandas的教程!没有之一!

    我喜欢 Pandas 的原因之一,是因为它很酷,它能很好地处理来自一大堆各种不同来源的数据,比如 Excel 表格、CSV 文件、SQL 数据库,甚至还能处理存储在网页上的数据。...如上,如果 Pandas 在两个 Series 里找不到相同的 index,对应的位置就返回一个空值 NaN。...于是我们可以选择只对某些特定的行或者列进行填充。比如只对 'A' 列进行操作,在空值处填入该列的平均值: ? 如上所示,'A' 列的平均值是 2.0,所以第二行的空值被填上了 2.0。...我喜欢 Pandas 的原因之一,是因为它很酷,它能很好地处理来自一大堆各种不同来源的数据,比如 Excel 表格、CSV 文件、SQL 数据库,甚至还能处理存储在网页上的数据。...数值处理 查找不重复的值 不重复的值,在一个 DataFrame 里往往是独一无二,与众不同的。找到不重复的值,在数据分析中有助于避免样本偏差。

    26K64

    Pandas_Study01

    DataFrame的创建有多种方式,不过最重要的还是根据dict进行创建,以及读取csv或者txt文件来创建。 series 相关基本操作 1....loc 用法(Dataframe): loc([这里是行标识], [这里是列标识]) 示例: data.loc[:,'列一'] #取出所有行第一列,loc可以理解为传入两个参数一个是关于行的,一个是关于列的...获取到dataframe 数据的方式 # 目前一般而言,获取到最多的方式就是 读取文件获取 # read_csv, read_excel等方法 可以从 csv等文本文件 或 excel 文件读取数据...4. dataframe 相关算术运算 1).如果其中一个是数值,那么这个数值会和DataFrame的每个位置上的数据进行相应的运算。...如果是列方向的运算,一个是dataFrame,另一个是Series,首先将Series沿列方向广播,然后运算。

    20110

    Day5

    github最新版本的R包安装有问题:1.安装旧版本,需要github软件2.从别的已安装该包的电脑上偷一个:使用 .libPaths() 命令找到与包同名的文件夹,编译好的R包,压缩打包;发给自己复制到自己...R包安装的文件夹,并解压本地安装文件读写直接读取失败,需要指定一些 参数CSV文件读取:read.csv()分隔符:逗号txt文件读取:read.table()将数据库文件导出成表格文件write.csv...(要导出的数据框变量名, file = "给导出文件的命名.csv")write.table(要导出的数据框变量名, file = "给导出文件的命名.txt")R特有的数据保存格式:Rdata保存的是变量...,不是表格文件,支持多变量保存到一个Rdata save()保存 load()加载文件读入各种问题1.列名位置列名没有在相应的位置,会导致一列的内容数据类型发生改变,处理起来有问题从读取函数的帮助文档中找到参数解决上述问题...列名中有特殊字符时,引用时会有单引号2.一个规则:数据框不允许重复的行名3 矩阵和数据框每列只能有一种数据类型,在对列的数据进行计算时需要注意是否为数值型数据4 列名修改library(stringr

    9410

    【数据分析】数据缺失影响模型效果?是时候需要missingno工具包来帮你了!

    Pandas 快速分析 在使用 missingno 库之前,pandas库中有一些特性可以让我们初步了解丢失了多少数据。...条形图 条形图提供了一个简单的绘图,其中每个条形图表示数据帧中的一列。条形图的高度表示该列的完整程度,即存在多少个非空值。...它可以通过调用: msno.bar(df) 在绘图的左侧,y轴比例从0.0到1.0,其中1.0表示100%的数据完整性。如果条小于此值,则表示该列中缺少值。 在绘图的右侧,用索引值测量比例。...如果在零级将多个列组合在一起,则其中一列中是否存在空值与其他列中是否存在空值直接相关。树中的列越分离,列之间关联null值的可能性就越小。...树状图可通过以下方式生成: msno.dendrogram(df) 在上面的树状图中,我们可以看到我们有两个不同的组。第一个是在右侧(DTS、RSHA和DCAL),它们都具有高度的空值。

    4.8K30

    《Kaggle项目实战》 泰坦尼克:从R开始数据挖掘(一)

    由于这是一个初学者的竞赛,Kaggle提供了两个优秀的工具及相关教程,以帮助你朝着正确的方向努力。一个是Excel,另一个是一种更有力的工具,即Python。...你需要下载在前言中提到的两个数据集:train.csv和test.csv,并将它们保存在方便的地方。在下载页面中向下滚动到变量说明,查看数据集中的相关变量,在阅读本教程时, 你可能需要参考它。...在训练集中有891个观测值(行),每个观测值有12个变量。测试集较小,只有418名乘客的命运需要预测,且只有11个变量,这是因为“Survived”列缺失了。这就是我们想要预测的列。...将专门创建这样一个列,并在其中存储418个“0”,“0”即为预测结果,418则是测试集的行数。...write.csv命令将数据框保存为一个CSV文件,并且去掉了会导致Kaggle拒绝我们提交的行号,这很重要。 好啦,这个文件应该已经保存在你的工作目录下了。

    2.4K60

    机器学习-线性回归预测房价模型demo

    这篇介绍的是我在做房价预测模型时的python代码,房价预测在机器学习入门中已经是个经典的题目了,但我发现目前网上还没有能够很好地做一个demo出来,使得入门者不能很快的找到“入口”在哪,所以在此介绍我是如何做的预测房价模型的题目...数据分为训练数据和测试数据,分别保存在kc_train.csv和kc_test.csv两个文件中。...其中训练数据主要包括10000条记录,14个字段,主要字段说明如下: 第一列“销售日期”:2014年5月到2015年5月房屋出售时的日期 第二列“销售价格”:房屋交易价格,单位为美元,是目标预测值...4.环境配置 python3.5 numpy库 pandas库 matplotlib库进行画图 seaborn库 sklearn库 5.csv数据处理 下载的是两个数据文件,一个是真实数据,一个是测试数据...,打开kc_train.csv,能够看到第二列是销售价格,而我们要预测的就是销售价格,所以在训练过程中是不需要销售价格的,把第二列删除掉,新建一个csv文件存放销售价格这一列,作为后面的结果对比。

    1.9K20

    Python读写csv文件专题教程(2)

    : label0102 如果不显示的指定此列的类型str, read_csv解析引擎会自动判断此列为整形,如下在原test.csv文件中增加上面一列,如果不指定dtype, 读入后label列自动解析为整型...数据域部分为空。 skiprows还可以被赋值为某种过滤规则的函数 skip_footer 从文件末尾过滤行,解析器退化为python. 这是因为c解析器没有这个特性。...2.4 文件空值处理 na_values 这个参数可以配置哪些值需要处理成Na/NaN, 类型为字典,键指明哪一列,值为看做Na/NaN的字符....假设我们的数据文件如下,date列中有一个 #值,我们想把它处理成NaN值。...---- read_csv的其他参数还包括如下: 时间处理 迭代 文件压缩相关 错误处理 指定列的类型 指定列为 Categorical 类型 基于各种应用场景的参数灵活运用

    80220

    Pandas知识点-排序操作

    :Jupyter Notebook的安装和使用 一、数据读取 数据文件是600519.csv,将此文件放到代码同级目录下,从文件中读取出数据。...例如多重索引中有三个行索引,level指定了按前两个索引排序,一个是升序一个是降序,此时即使sort_remaining为True,也不会继续按第三个行索引排序。不过,在实际应用中,这种情况极少。...na_position: 在按指定列进行排序时,如果此列数据中有空值(NaN),空值默认排在最后面,na_position参数默认为 last ,将na_position参数设置成 first 则空值排在最前面...按多个列进行排序 ? 给by参数传入多个列索引值时(用列表的方式),即可以对多个列进行排序。当第一列中有相等的数据时,依次按后面的列进行排序。ascending参数的用法与按多重索引排序一样。...kind参数用于设置使用的排序算法,在按多重索引排序和按多个列排序时无效。na_position参数用于设置空值排在最后面或最前面,在按多重索引排序和按多个列排序时无效。

    1.9K30

    Python随机抽取多个Excel的数据从而整合为一个新文件

    本文介绍基于Python语言,针对一个文件夹下大量的Excel表格文件,基于其中每一个文件,随机从其中选取一部分数据,并将全部文件中随机获取的数据合并为一个新的Excel表格文件的方法。   ...首先,我们来明确一下本文的具体需求。现有一个文件夹,其中有大量的Excel表格文件(在本文中我们就以.csv格式的文件为例);如下图所示。   ...其中,每一个Excel表格文件都有着如下图所示的数据格式;其中的第1行表示每一列的名称,第1列则表示时间。   ...然后,创建了一个空的DataFrame,用于存储抽样后的数据。   接下来是一个for循环,遍历了原始数据文件夹中的所有.csv文件,如果文件名以.csv结尾,则读取该文件。...然后,使用Pandas中的sample()函数随机抽取了该文件中的10行数据,并使用iloc[]函数删除了10行数据中的第1列(为了防止第1列表示时间的列被选中,因此需要删除)。

    24210

    如何将 PDF 表格数据免费转换到 Excel ?

    我当时没有理解这种需求。因为那篇文章谈的主要是把文本抽取出来,目的主要是进行下一步的自然语言处理。这种 PDF 文件中大量的内容,都是文字。表格在其中,只占非常小的比例。...其中转换效果较好,使用又方便的,大多是收费的。而且其中有些还着实并不便宜。 几经搜寻对比,我终于找到了一款免费且简便好用的工具。而且经过实际尝试,发现转换效果还不错。 这里,我把它推荐给你。...macOS 系统下载安装文件压缩包,解压之后,会出现这样一个目录。 双击执行其中的 Tabula.app ,你就可以看见浏览器中出现这样的 Web 界面。 下面我们转换一个 PDF 文件试试看。...然后,点击 Export 按钮,就可以把结果用 CSV 格式导出,并且可以在 Excel 中打开了。 调整 但是,有些复杂表格的提取中,原本不同的列,可能会被错误地放在一起。...显然,这里三列数据被挤在了一起。 好在因为这些数据都是用空格分割,因此拆分并不困难。 我们新建两个空列,好容纳新拆出来的数据。 然后选中第一列中需要拆分的数据。

    3.5K30

    GWAS实战之制作PLINK格式的文件(上)

    /sample_info.csv") #保存样本信息 至此,我们已经把表型数据做好了。 在PLINK软件中,我们通常需要两个文件,一个是以.map为后缀的文件,另一个是以.ped为后缀的文件。...其中,.map文件存储的是SNP位点的信息,主要由四列构成,第一列是染色体位置,第二个是SNP的ID(通常是rsID,但也可以是其它ID,只要保证唯一性即可),第三个是摩尔根位置,通常都可以设为0,第四个是碱基对位置...而.ped文件存储了样本信息,包括表型和基因型,其列数在6列以上,前六列数据和.fam文件的前六列一致,在往期推文中可以查到------初探PLINK文件格式(bed,bim,fam)。...如下图所示,第一个人的第一个SNP的基因型信息就是缺失的(第七列和第八列为0),而其第二个SNP的基因型就是AA。 接下来我先简单介绍一下如何制作.map文件。...因为在这套数据里的ID这一列是作为突变的marker在基因型文件中使用的,它是用来和基因型文件匹配用的,而Name这一类又包含rsID的信息,是后续注释用的,因此我们需要把这两列提取出来。

    1K10

    Python—关于Pandas的缺失值问题(国内唯一)

    获取文中的CSV文件用于代码编程,请看文末,关注我,致力打造别人口中的公主 在本文中,我们将使用Python的Pandas库逐步完成许多不同的数据清理任务。...其中一些来源只是简单的随机错误。在其他时候,可能会有更深层的原因导致数据丢失。 准备工作 在开始清理数据集之前,最好先大致了解一下数据。 有哪些功能?...了说明我的意思,让我们开始研究示例。 我们要使用的数据是非常小的房地产数据集。获取CSV文件,你可以在文末得到答案,以便可以进行编码。 ? 快速浏览一下数据: 快速了解数据的一种好方法是查看前几行。...这些是Pandas可以检测到的缺失值。 回到我们的原始数据集,让我们看一下“ ST_NUM”列。 ? 第三列中有一个空单元格。在第七行中,有一个“ NA”值。 显然,这些都是缺失值。...两个布尔响应均为。isnull() 和True 这是一个简单的示例,但强调了一个重点。Pandas会将空单元格和“NA”类型都识别为缺失值。下面,我将介绍一些Pandas无法识别的类型。

    3.2K40

    python操作excel表格(xlrdxlwt)

    0,说明这个单元格的值是空值,明明是合并的单元格内容"好朋友",这个是我觉得这个包功能不完善的地方,如果是合并的单元格那么应该合并的单元格的内容一样,但是它只是合并的第一个单元格的有值,其它的为空。...xlrd和xlwt两个模块分别用来读Excel和写Excel,只支持.xls和.xlsx格式,Python不默认包含。这两个模块之间相互独立,没有依赖关系,也就是说可以根据需要只安装其中一个。...在我写这篇文章时,xlrd是有一个适合python 3.x的.whl文件和一个通用的.tar.gz的源码文件。...庆幸的是,在xlutils.copy中有个copy()方法,我们可以将一个xlrd.Book对象转化为一个xlwt.Workbook对象,这样我们就可以直接对已存在的Excel文件进行修改了。...使用csv读写csv文件 与读写Excel文件相比,csv文件的读写是相当方便的。 直接看下面的例子吧。

    2.5K10

    用Pandas读取CSV,看这篇就够了

    可以传文件路径: # 支持文件路径或者文件缓冲对象 # 本地相对路径 pd.read_csv('data/data.csv') # 注意目录层级 pd.read_csv('data.csv') # 如果文件与代码文件在同一目录下...如果该参数为False,那么当列名中有重复时,前列将会被后列覆盖。...# 格式为engine=None,其中可选值有{'c', 'python'} pd.read_csv(data, engine='c') 13 列数据处理 使用converters参数对列的数据进行转换...# int类型,默认为None pd.read_csv(data, nrows=1000) 17 空值替换 na_values参数的值是一组用于替换NA/NaN的值。如果传参,需要指定特定列的空值。...比如,如果一行用双引号包裹着的数据中有换行符,用以下代码可以过滤其中的换行符。

    76.1K811
    领券