当然,默认的 Matplotlib 设置能够使得您的可视化视觉效果看起来十分朴素,但是显然是有点过时的。它默认的蓝色阴影通常难以满足许多数据科学家的需求。 采取默认设置的柱状图 ?...稍加调整的柱状图 ? 同时,Matplotlib 的一个不足之处在于它的可定制性。...坐标轴调整 Seaborn 是一个以 Matplotlib 为基础的库,可以通过一两行代码创建更复杂的图表类型(如 Heatmaps、Violins 和 Joint Plots)。...from cb91visuals import * 其它技巧 除了颜色、坐标轴、字体设置外,Matplotlib/Seaborn 还可以对以下内容进行设置。...(left=True, bottom=True) 柱状图上的数字标签:这是软件包中真正应该提供的功能,您可以使用 for looping 和 Matplotlib 的 .text()方法将数字标签添加到柱状图列的顶部
将通过专注于几个具体的属性来评价一个可视化工具的优缺点: 互动性 你想要交互式可视化吗?像Altair、Bokeh和Plotly这样的库允许你创建交互式图表,用户可以探索和互动。...经验之谈:Seaborn 是Matplotlib的一个高级版本。尽管它没有像Matplotlib那样广泛的集合,但Seaborn可以用更少的代码使流行的绘图,如柱状图、盒状图、热图等看起来更漂亮。...它提供了一系列类似于Matplotlib和Seaborn的图表类型,包括线图、散点图、面积图、条形图等等。...,用户可以将鼠标悬停在每个条形图上,查看相应的用户和关注者数量。...还记得我们用Plotly创建的可视化Github用户位置的地图吗?有了Folium,我们可以进一步增强地图的外观。
将通过专注于几个具体的属性来评价一个可视化工具的优缺点: 互动性 你想要交互式可视化吗?像Altair、Bokeh和Plotly这样的库允许你创建交互式图表,用户可以探索和互动。...优点 减少的代码 Seaborn提供了一个更高层次的接口来生成与Matplotlib类似的图。这意味着你可以用更少的代码和更漂亮的视觉设计来实现类似的可视化。...经验之谈:Seaborn 是Matplotlib的一个高级版本。尽管它没有像Matplotlib那样广泛的集合,但Seaborn可以用更少的代码使流行的绘图,如柱状图、盒状图、热图等看起来更漂亮。...它提供了一系列类似于Matplotlib和Seaborn的图表类型,包括线图、散点图、面积图、条形图等等。...,用户可以将鼠标悬停在每个条形图上,查看相应的用户和关注者数量。
在子图上添加子图-完美解决 如果将1当作主体子图,那么3 4 5 部分都可以看作是另外的子图,当然,都是在1基础上生成。...想到这里,我们就可以完美解决了,以下为子图生成样式: 子图构成架构 接下来,你就可以按照常规的在子图上绘制图形的步骤来单独绘制啦!! 为啥不用AI等合成工具完成?...不用ArcGIS,我照样可以画出惊艳的地图... 比Matplotlib合并子图更方便!patchworklib让我告别PS拼图... Xarray,不用ArcGIS,所有地理空间绘图全搞定......完美解决Matplotlib绘图中、英文字体混显问题.. MATLAB绘图不好看?!不是,你是还没发现这几个工具包吧.. 不是,这个地理数据工具这么强的吗?数据处理、可视化它都行.....这种环形图太难画?!带你一行代码搞定.. 不是,这封面图这么多人问的吗?教程来了 不用Seaborn,这个工具也能绘制超炫的统计图形··· NetworkX,网络结构图最强绘制工具·····
一个柱状图将所有的航线的长度分割到不同的值域,然后对落入到不同的值域范围内的航线进行计数。从中我们可以知道哪些航空公司的航线长,哪些航空公司的航线短。...Seaborn 建立在 matplotlib 的基础之上,做一些类型的描点,这些工作常常与简单的统计工作有关。我们可以基于一个核心的概率密度的期望,使用 distplot 函数来描绘一个柱状图。...seaborn 不含有与每个 matplotlib 的版本相对应的版本,但是它的确是一个很好的快速描点工具,而且相比于 matplotlib 的默认图表可以更好的帮助我们理解数据背后的含义。...墨卡托投影是将整个世界的绘图投射到二位曲面。然后,在地图上用红点点画机场。 上面地图的问题是找到每个机场在哪是困难的-他们就是在机场密度高的区域合并城一团红色斑点。...Folium 也允许非常广阔的修改选项来做更好的标注,或者添加更多的东西到地图上。 画弧线 在地图上看到所有的航空路线是很酷的,幸运的是,我们可以使用 basemap 来做这件事。
多变量分析可以让你在一张图上可以查看两个以上变量的关系。...选择不同的marker,呈现出来的符号样式也会不同,你可以自己试一下。 下面三张图分别对应“x”“>”和“o”。 ? ? ? 除了Matplotlib外,你也可以使用Seaborn进行散点图的绘制。...我们运行一下这个代码,就可以看到下面的视图(第一张图为Matplotlib绘制的,第二张图为Seaborn绘制的)。其实你能看到Matplotlib和Seaborn的视图呈现还是有差别的。...我们创建一个随机的一维数组,然后分别用Matplotlib和Seaborn进行直方图的显示,结果如下,你可以看出,没有任何差别,其中最后一张图就是kde默认为Ture时的显示情况。 ? ? ?...另外你也可以将这个位置上的颜色,与数据集中的其他位置颜色进行比较。 热力图是一种非常直观的多元变量分析方法。
数据集可以讲述很多故事。要想了解这些故事的展开,最好的方法就是从检查变量之间的相关性开始。在研究数据集时,我首先执行的任务之一是查看哪些变量具有相关性。这让我更好地理解我正在使用的数据。...我们将研究以下3种关系:年龄和体重,年龄和乳牙以及年龄和眼睛的颜色。 年龄和体重 ? 当我们观察年龄和体重之间的相关性时,图上的点开始形成一个正斜率。当我们计算r值时,得到0.954491。...使用Seaborn进行可视化 我们可以通过seaborn快速生成热图。为什么使用seaborn?...因为seaborn是基于matplotlib开发的并且提供了更多的扩展功能,最主要是的,它比matplotlib漂亮。...我们可以探索另一个很酷的假设。 在几秒钟内,我们就能看到如何输入数据,并至少可以探索3个想法。 结论 通过使用seaborn的热图,我们可以轻松地看到最相关的位置。
一个柱状图将所有的航线的长度分割到不同的值域,然后对落入到不同的值域范围内的航线进行计数。从中我们可以知道哪些航空公司的航线长,哪些航空公司的航线短。...Seaborn 建立在 matplotlib 的基础之上,做一些类型的描点,这些工作常常与简单的统计工作有关。我们可以基于一个核心的概率密度的期望,使用 distplot 函数来描绘一个柱状图。...seaborn 不含有与每个 matplotlib 的版本相对应的版本,但是它的确是一个很好的快速描点工具,而且相比于 matplotlib 的默认图表可以更好的帮助我们理解数据背后的含义。...画弧线 在地图上看到所有的航空路线是很酷的,幸运的是,我们可以使用 basemap 来做这件事。我们将画弧线连接所有的机场出发地和目的地。每个弧线想展示一个段都航线的路径。...画网络图 我们将做的最终的探索是画一个机场网络图。每个机场将会是网络中的一个节点,并且如果两点之间有路由将划出节点之间的连线。如果有多重路由,将添加线的权重,以显示机场连接的更多。
多变量分析可以让你在一张图上可以查看两个以上变量的关系。...Matplotlib 绘制: ? Seaborn 绘制: ? 饼图 饼图是常用的统计学模块,可以显示每个部分大小与总和之间的比例。在 Python 数据可视化中,它用的不算多。...另外你也可以将这个位置上的颜色,与数据集中的其他位置颜色进行比较。 热力图是一种非常直观的多元变量分析方法。...这里需要用到中文,Matplotlib 对中文的显示不是很友好,因此我设置了中文的字体 font,这个需要在调用前进行定义。最后我们可以得到下面的蜘蛛图,看起来是不是很酷? ?...在 Matplotlib 和 Seaborn 的函数中,我只列了最基础的使用,也方便你快速上手。当然如果你也可以设置修改颜色、宽度等视图属性。你可以自己查看相关的函数帮助文档。这些留给你来进行探索。
在本教程中,我们将学习在 seaborn 中创建三角形相关热图;顾名思义,相关性是一种度量,用于显示变量的相关程度。相关热图是一种表示数值变量之间关系的图。...它建立在matplotlib之上,并与Pandas数据结构紧密集成。它提供了几个图来表示数据。在熊猫的帮助下,我们可以创造有吸引力的情节。在本教程中,我们将说明三个创建三角形热图的示例。...最后,我们将学习如何使用 Seaborn 库来创建令人惊叹的信息丰富的热图。 语法 这是创建三角形相关热图的语法。...此外,Seaborn的“热图()”函数允许我们自定义调色板,并分别使用cmap和annot参数在热图上显示相关系数。...使用Seaborn创建热图对于必须探索和理解大型数据集中的相关性的数据科学家和分析师非常有用。借助这些热图,数据科学家和分析师可以深入了解他们的数据,并根据他们的发现做出明智的决策。
分簇散点图 分簇散点图 可以理解为数据点不重叠的分类散点图 该函数类似于stripplot(),但该函数可以对点进行一些调整,使得数据点不重叠。...swarmplot()可以自己实现对数据分类的展现,也可以作为盒形图或小提琴图的一种补充,用来显示所有结果以及基本分布情况。...True则沿着分类轴,将数据分离出来成为不同色调级别的条带, 否则,每个级别的点将相互叠加 orient:方向:v或者h 作用:设置图的绘制方向(垂直或水平), 如何选择:一般是根据输入变量的数据类型...= sns.load_dataset("tips") """ 案例8: 根据数据情况绘制箱图和分簇散点图 在箱图上绘制分簇散点图 """ sns.boxplot(x="tip", y="day", data...("tips") """ 案例9: 根据数据情况绘制小提琴图和分簇散点图 在小提琴图上绘制分簇散点图 """ sns.violinplot(x="day", y="total_bill", data=tips
如果您使用的是Jupyter Notebook,则在制作图表之前,将%matplotlib内联添加到文件的开头并运行它。 我们可以在一个图形中制作多个图形。...Seaborn Seaborn是基于Matplotlib的库。基本上,它提供给我们的是更好的图形和功能,只需一行代码即可制作复杂类型的图形。...将多个图形添加到单个文件: output_file('multiple_graphs.html') s1 = figure(width=250, plot_height=250, title='data...然后,我们将使用Geopandas将国家/地区名称转换为可在地图上绘制的坐标。...对于项目的高级阶段,我们可以在主库(Matplotlib,Seaborn,Bokeh,Altair)的图库中搜索我们喜欢并适合该项目的图形。
分类散点图 stripplot()可以自己实现对数据分类的展现,也可以作为盒形图或小提琴图的一种补充,用来显示所有结果以及基本分布情况。...True则沿着分类轴,将数据分离出来成为不同色调级别的条带, 否则,每个级别的点将相互叠加 orient:方向:v或者h 作用:设置图的绘制方向(垂直或水平), 如何选择:一般是根据输入变量的数据类型...:matplotlib color,gray 作用:设置每个点的周围线条颜色 linewidth:float 作用:设置构图元素的线宽度 案例教程 import seaborn as sns import...= sns.load_dataset("tips") """ 案例11: 根据数据情况绘制箱图和分类散点图 在箱图上绘制分类散点图 """ sns.boxplot(x="tip", y="day",...("tips") """ 案例10: 根据数据情况绘制小提琴图和分类散点图 在小提琴图上绘制分类散点图 """ sns.violinplot(x="day", y="total_bill", data=
复合折线图也可以称作堆叠面积图,堆叠面积图和基本面积图一样,唯一的区别就是图上每一个数据集的起点不同,起点是基于前一个数据集的,用于显示每个数值所占大小随时间或类别变化的趋势线,展示的是部分与整体的关系...code 在 seaborn 中,matplotlib 中 pie 方法的爆炸属性可以用作: import matplotlib.pyplot as plt import seaborn as sns...甜甜圈图也可称为环图,环图本质是饼图将中间区域挖空;环图相对于饼图空间的利用率更高,比如我们可以使用它的空心区域显示文本信息,标题等。...可以将 shadow 属性设置为 True 以在 seaborn / matplotlib 中执行此操作。...每个图标可以代表一个或多个(例如一百万)个单位。数据的并排比较在图标的列或行中完成。这是为了将每个类别相互比较。
通用函数 plt.style.use('seaborn') 配置图表样式,可以使用 plt.style.available 命令可以看到所有可用的风格。...', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblind10'] 也可以通过官网...坐标轴刻度与标签 可以将每个 Matplotlib 对象都看成是子对象的容器,例如每个 figure都会包含一个或多个 axes对象,每个 axes对象又会包含其他表示图形内容的对象。...可以通过从头开始创建一个新的图例艺术家对象(legend artist),然后用底层的ax.add_artist()方法在图上添加第二个图例。...lines[:2], ['line A', 'line B'], loc='upper right', frameon=False) # 创建第二个图例,通过add_artist方法添加到图上
如果您使用的是Jupyter Notebook,则在制作图表之前,将%matplotlib内联添加到文件的开头并运行它。 我们可以在一个图形中制作多个图形。...Seaborn是基于Matplotlib的库。...', col='categorical', data=df) 结果如下: Seaborn提供的最受欢迎的图形之一是热图。...我们将消除这些国家,以使其变得更加容易。然后,我们将使用Geopandas将国家/地区名称转换为可在地图上绘制的坐标。...对于项目的高级阶段,我们可以在主库(Matplotlib,Seaborn,Bokeh,Altair)的图库中搜索我们喜欢并适合该项目的图形。
江湖流传一句话:"字不如表,表不如图",在 Python 中数据可视化有许多选择,但是大多数的库在语法简洁与灵活度不能平衡,本系列将探讨数据探索时如何使用合适的数据可视化库完成工作。...今天我们来看看如何使用四象限图(波士顿矩阵图),为店铺销售员分门别类。本系列我将尽可能使用不同的工具制作。...计划中的工具: Python 的 seaborn Python 的 altair (能做出动态图,这是目前能比较方便做出图表之间联动的库) Python 的 plotly (能做出动态图,这是一个非常容易学习的库...需要 pandas 0.25 或以上的版本才能使用 虽然得到2个重要的指标,但你能通过数据看出啥吗?.../G/F/H 做有关提高成交率的销售培训 员工E在客单价方面很低(只推销低端商品),此时可以考虑让F对其培训 员工B应该是最有潜力的员工 ---- 总结 seaborn 一般需要配合 matplotlib
Matplotlib、Seaborn 和 Pandas 把这三个包放在一起有几个原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,当你在用 Seaborn 或 Pandas...下面是我用 Matplotlib 及相关工具所做的示例图: 在处理篮球队薪资数据时,我想找出薪资中位数最高的团队。...为了展示结果,我将每个球队的工资用颜色标成条形图,来说明球员加入哪一支球队才能获得更好的待遇。...Seaborn 绘制 21 种超实用精美图表 ggplot(2) 你可能会问,「Aaron,ggplot 是 R 中最常用的可视化包,但你不是要写 Python 的包吗?」。...使用 Pygal 非常简单: 实例化图片; 用图片目标属性格式化; 用 figure.add() 将数据添加到图片中。 我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。
在本文中,我们将通过使用seaborn可视化库在Python中进行对图的绘制和运行。我们将看到如何创建默认配对图以快速检查我们的数据,以及如何自定义可视化以获取更深入的洞察力。...虽然后面我们将使用分类变量进行着色,但seaborn中的默认对图仅绘制了数字列。...放在一起,这段代码给了我们下面的图: ? 使用PairGrid类的真正好处在于我们想要创建自定义函数来将不同的信息映射到图上。例如,我可能想要将两个变量之间的Pearson相关系数添加到散点图中。...相关系数现在出现在散点图上方。这是一个相对直接的例子,但我们可以使用PairGrid将我们想要的任何函数映射到图上。我们可以根据需要添加尽可能多的信息,只要我们能够弄清楚如何编写函数!...它显示了我们只做图标的总体思路,除了使用库中的任何现有功能(例如matplotlib将数据映射到图上)之外,我们还可以编写自己的函数来显示自定义信息。
领取专属 10元无门槛券
手把手带您无忧上云