首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

(震惊)机电学生竟然帮助建筑同学做人工智能大作业!

如果把机器学习的过程比作奔跑的列车,那么数据集就是用来支撑行驶的燃料,如果燃料的品质越好,那么列车运行就会更加高效,如果燃料充足,那么列车才能行驶到远方的终点。所以说数据集是至关重要的一部分。...获得数据集的方法最简单的就是去网络上下载,有很多免费的数据集在网络共享,不过有些数据并不是那么方便就能够获取的,所以这个时候你可能就需要去网络上通过爬虫去爬取,或者就是去自建数据集。...:标签名 当然,在自建数据集上面,还是很有学问和技巧。...机器学习新手在数据集上常犯的6个错误及避免方法:https://zhuanlan.zhihu.com/p/37807352 训练集与测试集 在开始训练模型之前,通常还是需要将数据集拆分成训练集和测试集...,实际上在配置好了训练集与测试集之后,使用sklearn进行模型训练只有两句话 clf = DecisionTreeClassifier()#采用决策树模型 clf.fit(x_train,y_train

45840

数据清洗&预处理入门完整指南

在本文中,我也附上数据集的前几行数据。 ? 我们有了数据集,但需要创建一个矩阵来保存自变量,以及一个向量来保存因变量。...如果包含属性数据,会怎么样呢? 这是一个好问题。没有办法明确地计算诸如猫、狗、麋鹿的均值。那么可以怎么做呢?可以将属性数据编码为数值!...如果我们的 Y 列也是如「Y」和「N」的属性变量,那么我们也可以在其上使用这个编码器。...训练集与测试集的划分 现在,你可以开始将数据集划分为训练集和测试集了。这已经在之前的图像分类教程一文中论述过了。不过记得,一定要将你的数据分为训练集和测试集,永远不要用测试集来训练!...模型需要在数据上训练,并在另外的数据上完成测试。对训练集的记忆并不等于学习。模型在训练集上学习得越好,就应该在测试集给出更好的预测结果。过拟合永远都不是你想要的结果,学习才是!

1.4K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python数据清洗 & 预处理入门完整指南!

    在本文中,我也附上数据集的前几行数据。 我们有了数据集,但需要创建一个矩阵来保存自变量,以及一个向量来保存因变量。...如果包含属性数据,会怎么样呢? 这是一个好问题。没有办法明确地计算诸如猫、狗、麋鹿的均值。那么可以怎么做呢?可以将属性数据编码为数值!...如果我们的 Y 列也是如「Y」和「N」的属性变量,那么我们也可以在其上使用这个编码器。...训练集与测试集的划分 现在,你可以开始将数据集划分为训练集和测试集了。这已经在之前的图像分类教程一文中论述过了。不过记得,一定要将你的数据分为训练集和测试集,永远不要用测试集来训练!...模型需要在数据上训练,并在另外的数据上完成测试。对训练集的记忆并不等于学习。模型在训练集上学习得越好,就应该在测试集给出更好的预测结果。过拟合永远都不是你想要的结果,学习才是!

    50510

    数据清洗&预处理入门完整指南

    最适当的方式是,在导入这些库的时候,赋予其缩写的称呼形式,在之后的使用中,这可以节省一定的时间成本。...在本文中,我也附上数据集的前几行数据。 我们有了数据集,但需要创建一个矩阵来保存自变量,以及一个向量来保存因变量。...如果我们的 Y 列也是如「Y」和「N」的属性变量,那么我们也可以在其上使用这个编码器。...训练集与测试集的划分 现在,你可以开始将数据集划分为训练集和测试集了。这已经在之前的图像分类教程一文中论述过了。不过记得,一定要将你的数据分为训练集和测试集,永远不要用测试集来训练!...模型需要在数据上训练,并在另外的数据上完成测试。对训练集的记忆并不等于学习。模型在训练集上学习得越好,就应该在测试集给出更好的预测结果。过拟合永远都不是你想要的结果,学习才是!

    1.5K20

    数据清洗&预处理入门完整指南

    最适当的方式是,在导入这些库的时候,赋予其缩写的称呼形式,在之后的使用中,这可以节省一定的时间成本。...在本文中,我也附上数据集的前几行数据。 ? 我们有了数据集,但需要创建一个矩阵来保存自变量,以及一个向量来保存因变量。...如果我们的 Y 列也是如「Y」和「N」的属性变量,那么我们也可以在其上使用这个编码器。...训练集与测试集的划分 现在,你可以开始将数据集划分为训练集和测试集了。这已经在之前的图像分类教程一文中论述过了。不过记得,一定要将你的数据分为训练集和测试集,永远不要用测试集来训练!...模型需要在数据上训练,并在另外的数据上完成测试。对训练集的记忆并不等于学习。模型在训练集上学习得越好,就应该在测试集给出更好的预测结果。过拟合永远都不是你想要的结果,学习才是! ?

    1K10

    Python数据清洗 & 预处理入门完整指南

    在本文中,我也附上数据集的前几行数据。 我们有了数据集,但需要创建一个矩阵来保存自变量,以及一个向量来保存因变量。...如果包含属性数据,会怎么样呢? 这是一个好问题。没有办法明确地计算诸如猫、狗、麋鹿的均值。那么可以怎么做呢?可以将属性数据编码为数值!...如果我们的Y列也是如「Y」和「N」的属性变量,那么我们也可以在其上使用这个编码器。...训练集与测试集的划分 现在,你可以开始将数据集划分为训练集和测试集了。这已经在之前的图像分类教程一文中论述过了。不过记得,一定要将你的数据分为训练集和测试集,永远不要用测试集来训练!...模型需要在数据上训练,并在另外的数据上完成测试。对训练集的记忆并不等于学习。模型在训练集上学习得越好,就应该在测试集给出更好的预测结果。过拟合永远都不是你想要的结果,学习才是!

    1.3K20

    数据清洗&预处理入门完整指南

    最适当的方式是,在导入这些库的时候,赋予其缩写的称呼形式,在之后的使用中,这可以节省一定的时间成本。...在本文中,我也附上数据集的前几行数据。 ? 我们有了数据集,但需要创建一个矩阵来保存自变量,以及一个向量来保存因变量。...如果我们的 Y 列也是如「Y」和「N」的属性变量,那么我们也可以在其上使用这个编码器。...训练集与测试集的划分 现在,你可以开始将数据集划分为训练集和测试集了。这已经在之前的图像分类教程一文中论述过了。不过记得,一定要将你的数据分为训练集和测试集,永远不要用测试集来训练!...模型需要在数据上训练,并在另外的数据上完成测试。对训练集的记忆并不等于学习。模型在训练集上学习得越好,就应该在测试集给出更好的预测结果。过拟合永远都不是你想要的结果,学习才是! ?

    88020

    数据清洗&预处理入门完整指南

    最适当的方式是,在导入这些库的时候,赋予其缩写的称呼形式,在之后的使用中,这可以节省一定的时间成本。...在本文中,我也附上数据集的前几行数据。 ? 我们有了数据集,但需要创建一个矩阵来保存自变量,以及一个向量来保存因变量。...如果我们的 Y 列也是如「Y」和「N」的属性变量,那么我们也可以在其上使用这个编码器。...训练集与测试集的划分 现在,你可以开始将数据集划分为训练集和测试集了。这已经在之前的图像分类教程一文中论述过了。不过记得,一定要将你的数据分为训练集和测试集,永远不要用测试集来训练!...模型需要在数据上训练,并在另外的数据上完成测试。对训练集的记忆并不等于学习。模型在训练集上学习得越好,就应该在测试集给出更好的预测结果。过拟合永远都不是你想要的结果,学习才是! ?

    1K10

    数据清洗预处理入门完整指南

    最适当的方式是,在导入这些库的时候,赋予其缩写的称呼形式,在之后的使用中,这可以节省一定的时间成本。...在本文中,我也附上数据集的前几行数据。 ? 我们有了数据集,但需要创建一个矩阵来保存自变量,以及一个向量来保存因变量。...如果我们的 Y 列也是如「Y」和「N」的属性变量,那么我们也可以在其上使用这个编码器。...训练集与测试集的划分 现在,你可以开始将数据集划分为训练集和测试集了。这已经在之前的图像分类教程一文中论述过了。不过记得,一定要将你的数据分为训练集和测试集,永远不要用测试集来训练!...模型需要在数据上训练,并在另外的数据上完成测试。对训练集的记忆并不等于学习。模型在训练集上学习得越好,就应该在测试集给出更好的预测结果。过拟合永远都不是你想要的结果,学习才是! ?

    1.2K20

    使用重采样评估Python中机器学习算法的性能

    第二个最好的方法是使用来自统计学的聪明技术,称为重采样方法,使您可以准确估计算法在新数据上的表现。...评估是一个估计,我们可以用来谈论我们认为算法实际上可能在实践中做得如何。这不是表演的保证。 一旦我们估计了算法的性能,我们就可以在整个训练数据集上重新训练最终的算法,并准备好用于操作。...重复的随机测试列车拆分。 我们将从最简单的方法开始,称为训练和测试集。 1.分割成训练和测试集 我们可以使用最简单的方法来评估机器学习算法的性能,即使用不同的训练和测试数据集。...不利的一面是,重复可能包括列车中的大部分相同的数据,或者从运行到运行的测试分离,将冗余引入到评估中。 下面的例子将数据拆分成67%/ 33%的列车/测试拆分,并重复该过程10次。...当使用慢速算法时,使用列车/测试分组对于速度是有利的,并且在使用大型数据集时使用较低偏差产生性能估计。

    3.4K121

    如何在Python中为长短期记忆网络扩展数据

    你可以在进行预测之前检查这些观察值,并删除他们从数据集或限制他们到预先定义的最大值或最小值。 你可以使用scikit-learn的对象MinMaxScaler来归一化数据集。...我们也可以看到数据集的最小值和最大值分别是10.0和100.0。...你可以使用scikit-learn对象StandardScaler来标准化数据集。...- 我应该归一化/标准化/重新缩放数据吗?神经网络常见问题 缩放输出变量 输出变量是由神经网络预测得到的。 你必须确保输出变量的比例与神经网络输出层上的激励函数(传递函数)的比例相匹配。...你可能确实需要重新调整你的输入和输出变量。如果有疑问,至少要归一化你的数据。 进一步阅读 本节列出了一些额外的资源,你不妨在缩放使参考一下。 我应该归一化/标准化/重新调整数据吗?神经网络常见问题。

    4.1K70

    python实现交叉验证_kfold显示不可迭代

    交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。...在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓“交叉”。 那么什么时候才需要交叉验证呢?交叉验证用在数据不是很充足的时候。...它的基本想法就是重复地使用数据:把给定的数据进行切分,将切分的数据集组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。...; 3、将上一步对可能的 k 种选择重复进行 (每次挑一个不同的子集做测试集); 4、在每个训练集上训练后得到一个模型,用这个模型在相应的测试集上测试,计算并保存模型的评估指标, 5、这样就训练了 k...当我们的数据集小时,我们的数据无法满足模型的复杂度就会过拟合,使用交叉验证我们可以重复地使用数据:把给定的数据进行切分,将切分的数据集组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。

    75220

    一个实例告诉你:Kaggle 数据竞赛都有哪些套路

    ,我感觉这样有些本末倒置的感觉,数据和特征决定了我们的上限。...这里呢,我主要想讲的就是完成一个数据竞赛的整个流程以及其中最常见的一些套路,希望可以帮助大家可以快速入门竞赛,以期取得好成绩或者给自己求职增添砝码。...,甚至聚类算法我们都可以试试……不过呢,花板子我们就不玩了,这里我们就选择逻辑回归,支持向量分类器,随机森林分类器和梯度提升分类器来做一下,看看它们在训练集上的表现如何: #模型构造 from sklearn.model_selection...那要想用这个模型进行预测,那我们要对测试集的数据做和训练集数据同样的事儿,包括补全无效值,预测年龄,one-hot编码以及归一化等等,只有这样我们的训练模型才能最大限度的发挥它的作用。...weights=[0.5,1.5,0.6,0.6]) model.fit(x_tr,y_tr) print model.score(x_te,y_te) 输出为: 0.860830527497 测试集上的表现可真棒啊

    91661

    做数据处理,你连 fit、transform、fit_transform 都分不清?

    翻译一下:计算用于进行特征缩放的均值、标准差 同样的,使用 fit 函数也可以对需要标准化的数据集进行均值、标准差的计算 相应的函数方法如下: import numpy as np from sklearn.preprocessing...项目中使用技巧 了解了 fit、transform 的用法之后,可以再来学习下在项目中使用的小技巧。 项目的数据集一般都会分为 训练集和测试集,训练集用来训练模型,测试集用来验证模型效果。...要想训练的模型在测试集上也能取得很好的得分,不但需要保证训练集数据和测试集数据分布相同,还必须保证对它们进行同样的数据预处理操作。比如:标准化和归一化。...) 一定要注意,一定要注意,一定要注意: 不能对训练集和测试集都使用 fit_transform,虽然这样对测试集也能正常转换(归一化或标准化),但是两个结果不是在同一个标准下的,具有明显差异。...其次,在项目上对训练数据和测试数据需要使用同样的标准进行转换,切记不可分别进行 fit_transform.

    18.1K83

    Python数据分析实验四:数据分析综合应用开发

    要求明确目标和应用需求,涵盖数据预处理、建模分析、模型评价和结果展示等处理阶段,完成整个分析流程。...随后,我尝试使用网格搜索和交叉验证来找出每种算法的较优超参数,以进一步提升其分类性能。   首先,我加载了乳腺癌数据集,并将其划分为训练集和测试集。...然后,我分别使用逻辑回归、SVM和kNN算法进行训练,并在测试集上进行评估。评估指标包括准确率、精确率、召回率和F1-score等。通过这些指标,我能够了解每种算法在乳腺癌数据集上的分类性能。   ...而交叉验证则是一种评估模型性能和泛化能力的方法,它将数据集分成多个子集,在每个子集上轮流进行训练和测试,从而得到更稳健的性能评估结果。   ...在进行网格搜索和交叉验证时,我根据每种算法的参数范围设置了不同的参数组合,并使用交叉验证来评估每种参数组合的性能。

    10610

    KFold交叉验证

    交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。...在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓“交叉”。   那么什么时候才需要交叉验证呢?交叉验证用在数据不是很充足的时候。...它的基本想法就是重复地使用数据:把给定的数据进行切分,将切分的数据集组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。...; 3、将上一步对可能的 k 种选择重复进行 (每次挑一个不同的子集做测试集); 4、在每个训练集上训练后得到一个模型,用这个模型在相应的测试集上测试,计算并保存模型的评估指标, 5、这样就训练了...当我们的数据集小时,我们的数据无法满足模型的复杂度就会过拟合,使用交叉验证我们可以重复地使用数据:把给定的数据进行切分,将切分的数据集组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。

    1.9K10

    慎用预训练深度学习模型

    合情合理,为什么不利用一个经过大量数据和计算训练的模型呢? 来看看国外两个网站Reddit和HackerNews上的讨论: 预训模型万岁!...柯蒂斯的文章也在推特上引发了一些不同的声音。 了解(并信任)这些基准测试非常重要,因为它们允许您根据要使用的框架做出明智的决策,并且通常用作研究和实现的基准。...您是否期望引用0.945%的验证精度为Keras Xception模型,如果您正在使用您的新x射线数据集,首先,您需要检查您的数据与模型所训练的原始数据集(在本例中为ImageNet)有多相似。...6.在使用批处理规范化或退出等优化时,特别是在训练模式和推理模式之间,有什么不同吗? 正如柯蒂斯的文章所说: 使用批处理规范化的Keras模型可能不可靠。...我相信当BN被冻结时,更好的方法是使用它在训练中学习到的移动平均值和方差。为什么?由于同样的原因,在冻结层时不应该更新小批统计数据:它可能导致较差的结果,因为下一层的训练不正确。

    1.7K30

    快速入门Python机器学习(34)

    那么问题是,当我们在训练模型的时候,一定要对数据进行变换吗?这得视情况而定。很多人对多层感知机有个误解,认为输入的数据必须在[0,1]这个范围内。...2)标准化(Standard Scaler) 计算训练集的平均值和标准差,以便测试数据集使用相同的变换。...as plt # 导入数据划分模块、分为训练集和测试集 from sklearn.model_selection import train_test_split from sklearn.preprocessing...通过计算训练集中样本的相关统计信息,对每个特征分别进行定心和缩放。然后存储中位数和四分位间距,以便使用变换方法在以后的数据上使用。 数据集的标准化是许多机器学习估计器的共同要求。...如果你的数据有离群点,对数据进行均差和方差的标准化效果并不好。这种情况你可以使用robust_scale 和 RobustScaler 作为替代。它们有对数据中心化和数据的缩放鲁棒性更强的参数。

    55310

    训练的神经网络不工作?一文带你跨过这37个坑

    它看起来很好:梯度在变化,损失也在下降。但是预测结果出来了:全部都是零值,全部都是背景,什么也检测不到。我质问我的计算机:「我做错了什么?」,它却无法回答。...数据集问题 ? 1. 检查你的输入数据 检查馈送到网络的输入数据是否正确。例如,我不止一次混淆了图像的宽度和高度。有时,我错误地令输入数据全部为零,或者一遍遍地使用同一批数据执行梯度下降。...Shuffle 数据集 如果你的数据集没有被 shuffle,并且有特定的序列(按标签排序),这可能给学习带来不利影响。你可以 shuffle 数据集来避免它,并确保输入和标签都被重新排列。 8....检查训练、验证、测试集的预处理 CS231n 指出了一个常见的陷阱:「任何预处理数据(例如数据均值)必须只在训练数据上进行计算,然后再应用到验证、测试数据中。...例如计算均值,然后在整个数据集的每个图像中都减去它,再把数据分发进训练、验证、测试集中,这是一个典型的错误。」此外,要在每一个样本或批量(batch)中检查不同的预处理。 III.

    1.1K100

    解决sklearn.exceptions.NotFittedError: This StandardScaler instance is not fitted

    (X_test_scaled)# 计算预测误差等其他评估指标上述代码中,首先使用​​train_test_split​​函数将数据集分为训练集和测试集。...它建立在NumPy、SciPy和matplotlib等科学计算库的基础上,旨在为用户提供简单且高效的工具,用于数据挖掘和数据分析。...它还提供了大量的数据预处理、评估和模型选择的功能,使得用户能够方便地完成整个机器学习流程。高效性:scikit-learn使用Cython作为底层实现,对算法进行了高度优化,从而实现了高速的计算性能。...首先,使用​​load_iris​​函数加载鸢尾花数据集。然后,使用​​train_test_split​​函数将数据集分成训练集和测试集。...接下来,我们创建一个K近邻分类器实例,并调用​​fit​​方法在训练集上训练模型。最后,使用测试集进行预测,并计算准确率。

    54410
    领券