首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

初探 Spark ML 第一部分

环境准备 集群环境Centos7.6默认的Python版本为2.7,鉴于目前机器学习的Python库已大量迁移至Python3,我们需要先把集群的Python替换掉。...在分类问题中,目标是将输入分离为一组离散的类或标签。例如在二分类中,如何识别狗和猫,狗和猫就是两个离散标签。 在回归问题中,要预测的值是连续数,而不是标签。这意味着您可以预测模型在训练期间未看到的值。...例如,您可以构建一个模型来预测给定温度的每日冰淇淋销售情况。您的模型可能会预测值 $77.67,即使它所训练的输入/输出对都没有包含该值。...数据提取与探索 我们对示例数据集中的数据进行了稍微的预处理,以去除异常值(例如,Airbnbs发布价为$ 0 /晚),将所有整数都转换为双精度型,并选择了一百多个字段中的信息子集。...此外,对于数据列中所有缺失的数值,我们估算了中位数并添加了一个指示符列(列名后跟_na,例如bedrooms_na)。这样,ML模型或人工分析人员就可以将该列中的任何值解释为估算值,而不是真实值。

1.3K11

PySpark-prophet预测

放入模型中的时间和y值名称必须是ds和y,首先控制数据的周期长度,如果预测天这种粒度的任务,则使用最近的4-6周即可。...至于缺失值的填充,prophet可以设置y为nan,模型在拟合过程中也会自动填充一个预测值,因为我们预测的为sku销量,是具有星期这种周期性的,所以如果出现某一天的缺失,我们倾向于使用最近几周同期数据进行填充...,没有优先使用均值或众数进行填充,是因为,均值和众数会掩盖序列的周期性,破坏整个序列的规律,为了进一步对数据进行平滑,对于异常值还进行了分位数盖帽,因为时序数据往往是偏态分布,所以我们对原始值做了取对数处理...是假日数据,数据格式需要按照文档要求进行定义,改函数部分也会和整个代码一起放在github,如果序列中最近呈现出较大的下滑或者增长,那么预测值很容易得到负数或者非常大,这个时候我们依然需要对预测值进行修正...true_time] data['ds'] = data['ds'].astype(str) data['ds'] = pd.to_datetime(data['ds']) # 异常值替换

1.4K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器学习回归模型相关重要知识点总结

    它是通过从观察值中减去预测值的计算机。 残差图是评估回归模型的好方法。它是一个图表,在垂直轴上显示所有残差,在 x 轴上显示特征。...它会惩罚具有较高斜率值的特征。 l1 和 l2 在训练数据较少、方差高、预测特征大于观察值以及数据存在多重共线性的情况下都很有用。 八、异方差是什么意思?...它是指最佳拟合线周围的数据点的方差在一个范围内不一样的情况。它导致残差的不均匀分散。如果它存在于数据中,那么模型倾向于预测无效输出。检验异方差的最好方法之一是绘制残差图。...现在,为了计算 v1 的 vif,将其视为一个预测变量,并尝试使用所有其他预测变量对其进行预测。 如果 VIF 的值很小,那么最好从数据中删除该变量。因为较小的值表示变量之间的高相关性。...它运行n次,并试图找到最佳的参数组合,以预测因变量的观测值和预测值之间的误差最小。 它可以非常高效地管理大量数据,并解决高维问题。 十一、除了MSE 和 MAE 外回归还有什么重要的指标吗?

    1.3K30

    回归问题的评价指标和重要知识点总结

    它是通过从观察值中减去预测值的计算机。 残差图是评估回归模型的好方法。它是一个图表,在垂直轴上显示所有残差,在 x 轴上显示特征。...它会惩罚具有较高斜率值的特征。 l1 和 l2 在训练数据较少、方差高、预测特征大于观察值以及数据存在多重共线性的情况下都很有用。 8、异方差是什么意思?...它是指最佳拟合线周围的数据点的方差在一个范围内不一样的情况。它导致残差的不均匀分散。如果它存在于数据中,那么模型倾向于预测无效输出。检验异方差的最好方法之一是绘制残差图。...现在,为了计算 v1 的 vif,将其视为一个预测变量,并尝试使用所有其他预测变量对其进行预测。 如果 VIF 的值很小,那么最好从数据中删除该变量。因为较小的值表示变量之间的高相关性。...它运行n次,并试图找到最佳的参数组合,以预测因变量的观测值和预测值之间的误差最小。 它可以非常高效地管理大量数据,并解决高维问题。 除了MSE 和MAE外回归还有什么重要的指标吗?

    1.7K10

    利用PySpark对 Tweets 流数据进行情感分析实战

    我们看到了上面的社交媒体数据——我们正在处理的数据令人难以置信。你能想象存储所有这些数据需要什么吗?这是一个复杂的过程!...在数据预处理阶段,我们需要对变量进行转换,包括将分类变量转换为数值变量、删除异常值等。Spark维护我们在任何数据上定义的所有转换的历史。...,我们将从定义的端口添加netcat服务器的tweets,Spark API将在指定的持续时间后接收数据 「预测并返回结果」:一旦我们收到tweet文本,我们将数据传递到我们创建的机器学习管道中,并从模型返回预测的情绪...Spark数据帧中有了数据,我们需要定义转换数据的不同阶段,然后使用它从我们的模型中获取预测的标签。...在最后阶段,我们将使用这些词向量建立一个逻辑回归模型,并得到预测情绪。 请记住,我们的重点不是建立一个非常精确的分类模型,而是看看如何在预测模型中获得流数据的结果。

    5.4K10

    计量经济学软件EViews最新中文版,EViews软件2023安装教程下载

    此外,EViews还提供了多种模型诊断工具,如残差检验、异方差性检验和模型拟合优度检验,以帮助用户评估模型的质量和健壮性。...时间序列预测和模拟是EViews的另一项功能,它可以帮助用户对未来的趋势进行预测,并可以对模型进行模拟和预测,以评估模型的预测能力和健壮性。...在EViews中,您可以使用数据浏览器或者数据编辑器来查看数据。您可以检查数据是否有缺失值、异常值或重复值等问题。 处理缺失值 如果数据中存在缺失值,您可以选择删除缺失值或者填充缺失值。...EViews提供了多种处理缺失值的方法,如用平均值、中位数、众数等填充缺失值,或者使用回归分析等方法进行填充。 处理异常值 如果数据中存在异常值,您需要检查异常值的来源并进行处理。...在EViews中,您可以使用多种方法来处理异常值,如剔除异常值、替换异常值等方法。 处理重复值 如果数据中存在重复值,您需要进行去重处理。

    1.4K20

    机器学习回归模型的最全总结!

    2.多元回归存在多重共线性,自相关性和异方差性。 3.线性回归对异常值非常敏感。它会严重影响回归线,最终影响预测值。 4.多重共线性会增加系数估计值的方差,使得在模型轻微变化下,估计非常敏感。...如果数据包含异常值,则最佳拟合线将向异常值移动一点,从而增加错误率并得出具有非常高 MSE 的模型。 什么是 MSE 和 MAE 有什么区别? MSE 代表均方误差,它是实际值和预测值之间的平方差。...它会惩罚具有较高斜率值的特征。 l1 和 l2 在训练数据较少、方差高、预测特征大于观察值以及数据存在多重共线性的情况下都很有用。 异方差是什么意思?...它是指最佳拟合线周围的数据点的方差在一个范围内不一样的情况。它导致残差的不均匀分散。如果它存在于数据中,那么模型倾向于预测无效输出。检验异方差的最好方法之一是绘制残差图。...它运行n次,并试图找到最佳的参数组合,以预测因变量的观测值和预测值之间的误差最小。 它可以非常高效地管理大量数据,并解决高维问题。 除了MSE 和 MAE 外回归还有什么重要的指标吗?

    1.8K20

    【深度学习】回归模型相关重要知识点总结

    二、什么是残差,它如何用于评估回归模型 残差是指预测值与观测值之间的误差。它测量数据点与回归线的距离。它是通过从观察值中减去预测值的计算机。 残差图是评估回归模型的好方法。...它会惩罚具有较高斜率值的特征。 l1 和 l2 在训练数据较少、方差高、预测特征大于观察值以及数据存在多重共线性的情况下都很有用。 八、异方差是什么意思?...它是指最佳拟合线周围的数据点的方差在一个范围内不一样的情况。它导致残差的不均匀分散。如果它存在于数据中,那么模型倾向于预测无效输出。检验异方差的最好方法之一是绘制残差图。...数据内部异方差的最大原因之一是范围特征之间的巨大差异。...现在,为了计算 v1 的 vif,将其视为一个预测变量,并尝试使用所有其他预测变量对其进行预测。 如果 VIF 的值很小,那么最好从数据中删除该变量。因为较小的值表示变量之间的高相关性。

    35110

    如何使用Apache Spark MLlib预测电信客户流失

    其余的字段将进行公平的竞赛,来产生独立变量,这些变量与模型结合使用用来生成预测值。 要将这些数据加载到Spark DataFrame中,我们只需告诉Spark每个字段的类型。...特征向量是浮点数值的数组,表示我们的模型可用于进行预测的自变量。标签是代表我们的机器学习算法试图预测的因变量的单个浮点值。在我们这样的二元分类问题中,我们使用0.0和1.0来表示两种可能的预测结果。...我们可以证明它产生的预测比随机猜测更好吗?对于二元分类模型,有用的评估指标是ROC曲线下的面积。通过采用二值分类预测器来产生ROC曲线,该预测器使用阈值来给连续预测值的定标签。...0.5的AUROC(AreaUnderROC,ROC曲线下面积)值意味着你的预测器在两个类别之间的区分性并不比随机猜测更好。值越接近1.0,预测越好。...低于0.5的值表示我们可以通过反转它给我们的答案来使我们的模型产生更好的预测。 MLlib也使计算AUROC非常容易。

    4K10

    【深度学习】回归模型相关重要知识点总结

    二、什么是残差,它如何用于评估回归模型 残差是指预测值与观测值之间的误差。它测量数据点与回归线的距离。它是通过从观察值中减去预测值的计算机。 残差图是评估回归模型的好方法。...它会惩罚具有较高斜率值的特征。 l1 和 l2 在训练数据较少、方差高、预测特征大于观察值以及数据存在多重共线性的情况下都很有用。 八、异方差是什么意思?...它是指最佳拟合线周围的数据点的方差在一个范围内不一样的情况。它导致残差的不均匀分散。如果它存在于数据中,那么模型倾向于预测无效输出。检验异方差的最好方法之一是绘制残差图。...数据内部异方差的最大原因之一是范围特征之间的巨大差异。...现在,为了计算 v1 的 vif,将其视为一个预测变量,并尝试使用所有其他预测变量对其进行预测。 如果 VIF 的值很小,那么最好从数据中删除该变量。因为较小的值表示变量之间的高相关性。

    53110

    大数据分析中的机器学习基础:从原理到实践

    今天,我们就来聊聊大数据分析中的机器学习基础,既讲道理,也上代码,力求让你在读完这篇文章后,能对机器学习在大数据中的应用有更清晰的认知。1. 机器学习是什么?...机器学习在大数据中的作用在大数据分析中,机器学习的作用主要体现在以下几个方面:数据分类:如垃圾邮件过滤、信用卡欺诈检测。预测分析:如股票市场预测、销售量预测。聚类分析:如客户画像分析、异常检测。...代码示例:用Python实现大数据中的机器学习4.1 数据准备我们使用scikit-learn库中的鸢尾花(Iris)数据集作为示例,该数据集包含 150 个样本,每个样本有 4 个特征,分别表示不同鸢尾花的属性...例如,在SVM中,我们可以调整C值(正则化参数)。...5.3 数据质量问题在大数据环境中,数据可能存在缺失值、重复值、异常值等情况,必须做好数据清洗工作,否则会影响模型效果。6.

    12110

    简历项目

    都是比较重要的特征,我们不考虑舍弃 缺失值处理方案: 填充方案:结合用户的其他特征值,利用随机森林算法进行预测;但产生了大量人为构建的数据,一定程度上增加了数据的噪音 把变量映射到高维空间(把缺失值当做单独的一类处理...,因此也不能滥用 利用随机森林对缺失值预测 from pyspark.mllib.regression import LabeledPoint # 剔除掉缺失值数据,将余下的数据作为训练数据 # user_profile_df.dropna...,因此这里直接使用热独编码方式处理数据 # 使用热独编码转换pvalue_level的一维数据为多维,其中缺失值单独作为一个特征值 # 需要先将缺失值全部替换为数值,与原有特征一起处理 from...对数据进行清洗(缺失值处理、过滤异常值、去噪),步态周期分割。为了减少移动设备方向对数据的干扰,将传感器数据进行坐标系的转换(设备坐标系转变到用户坐标系)。...GBDT GBDT 原理:只能用回归树。每一颗树学的是之前所有树结论和的残差,用损失函数的负梯度来拟合本轮损失的近似值。

    1.8K30

    异类框架BigDL,TensorFlow的潜在杀器!

    如何分析存储在 HDFS、Hive 和 HBase 中 tb 级的数据吗?企业想用深度学习模型,可是要考虑的问题又很多,怎么破?...这篇文章中,我们将给大家讲讲大数据+深度学习下,BigDL 框架的利弊与应用教程,为什么有了 TF、PyTorch,还是会考虑用 BigDL? 为什么要讲 BigDL?...为什么要权衡这些问题其实不难理解,我们需要保持一致的环境,避免大型数据集跨不同集群之间的传递。此外,从现有的基础设施中移动专有数据集也有安全风险与隐患。...其异有二:(1)CPU、(2)纯分布式(Spark) 虽然业界普遍不看好CPU跑深度学习,但实际上还是有需求的。比如,现有Hadoop集群的公司,复用现有集群来跑深度学习是最经济的方案。...预训练模型:可以将给定的图像在 1000 个标签中进行分类; 模型训练与预测:特定用例通过迁移学习重新训练模型,对包含蚂蚁和蜜蜂的训练集进行预测。

    1.5K30

    进行机器学习和数据科学常犯的错误

    我们研究了数据科学过程中的典型错误,包括错误的数据可视化、错误的缺失值处理、错误的分类变量转换等等。让我们学会如何避免。 这是这个系列的第2部分,请在这里找到第1部分—如何从头构建数据科学项目。...您需要可视化每个变量,以查看分布,找到异常值,并理解为什么会有这样的异常值。 如何处理某些特征中缺失的值? 将分类特征转换成数值特征的最佳方法是什么?...由于各种原因,有时会会有一些缺失值。如果我们删除每一个至少有一个缺失值的观测,我们可以得到一个非常精简的数据集。...我需要标准化变量吗? 标准化使所有连续变量具有相同的规模,这意味着如果一个变量的值从1K到1M,另一个变量的值从0.1到1,标准化后它们的范围将相同。...租金的对数(左)和未转换数据(右)的残差图(不包括账单变量)。 右图显示“异方差性” - 随着预测从小到大,残差变大。

    1.1K20

    突出最强算法模型——回归算法 !!

    2、缺失值和异常值的处理 (1)处理缺失值 ① 数据探索与理解 首先,需要仔细了解数据,确定哪些特征存在缺失值,并理解缺失的原因。...模型预测:使用其他特征建立模型来预测缺失值。...② 异常值的处理方式 删除:如果异常值数量较少且不影响整体趋势,可以考虑删除异常样本。 替换:用特定值(如上下限、中位数、均值)替换异常值,使其不会对模型产生过大影响。...③ 代码示例 # 假设 df 是你的数据框 # 假设我们使用 Z 分数方法来检测异常值并替换为均值 from scipy import stats z_scores = stats.zscore(df...这可以用以下公式表示: 其中: 是输出变量 是输入特征 是模型的系数(也称为权重) 是误差项,表示模型无法解释的部分 (2)损失函数 我们需要定义一个损失函数来衡量模型的预测与实际观测值之间的差异。

    16210

    通俗易懂快速理解支持向量机(SVM)

    注:处于两边虚线上的点统称为支持向量 以上是针对数据样本是线性可分的情况,但我们也经常会遇到一些线性不可分的情况,比如“异或”问题就不是线性可分的,对于这样的问题,我们可将样本从原始空间映射到一个更高维的特征空间...在前面的讨论中,我们一直假定训练样本在样本空间或特征空间中是线性可分的,即存在一个超平面能将不同类的样本完全划分开,然而在现实中往往很难确定合适的核函数使得训练样本在特征空间中线性可分,但我们仍然认为SVM...它是较好的分类器,因为在我们的训练数据中通常会存在一些异常值,也就是我们俗称的噪声数据。...如果模型在训练(学习)的时候把这些“噪声”数据都学到了,那模型往往会过拟合,这是机器学习中的大忌,所以SVM在拟合时会保证一定的容错性,忽略异常值来保证全局预测结果的准确性,这就是我们通常所说的“软间隔...可以看到支持向量机SVM预测准确率为1.0,也就是说在测试集中样本分类100%被预测对了✌️,前面我们用决策树预测鸢尾花这个数据集准确率是0.96(还记得吗?)

    1.3K10

    统计师的Python日记【第七天:数据清洗(1)】

    异常值监测 3. 替换 4. 数据映射 5. 数值变量类型化 6....A/B/C/D每个地区值保留一条数据了。 2. 异常值检测 在第一步剔除重复值之后。得到了无重复数据的data_noDup: ? 第二步,我想检测一下数据中有没有异常值。...有两个变量值得我们注意,一个是age,最大值158、最小值6,肯定有问题,另一个是package,最小值是-9,存在缺失。...替换 我要把异常的年龄替换成缺失,把package等于-9的替换成0(换成0是因为,不抽烟其实也就是抽烟数量为0,这样还能少一些缺失值)。...以本例中的SHabit(睡眠情况)为例,四个取值是并列的,没有顺序,因此我们要把这1个问题变成4个: SHabit(睡眠习惯,1-早睡早起;2-晚睡早起;3-早睡晚起;4-晚睡晚起) 变成: SHabit

    1.7K101

    Spark Extracting,transforming,selecting features

    idfModel.transform(featurizedData) rescaledData.select("label", "features").show() Word2Vec Word2Vec是一个使用文档中的词序列的预测器...,也就是分为多少段,比如设置为100,那就是百分位,可能最终桶数小于这个设置的值,这是因为原数据中的所有可能的数值数量不足导致的; NaN值:NaN值在QuantileDiscretizer的Fitting...在这个例子中,Imputer会替换所有Double.NaN为对应列的均值,a列均值为3,b列均值为4,转换后,a和b中的NaN被3和4替换得到新列: a b out_a out_b 1.0 Double.NaN...的DataFrame作为我们目标来预测: id features clicked 7 [0.0, 0.0, 18.0, 1.0] 1.0 8 [0.0, 1.0, 12.0, 0.0] 0.0 9 [1.0...(10, Array[(2,1.0),(3,1.0),(5,1.0)])表示空间中有10个元素,集合包括元素2,3,5,所有非零值被看作二分值中的”1“; from pyspark.ml.feature

    21.9K41

    PySpark|ML(评估器)

    引 言 在PySpark中包含了两种机器学习相关的包:MLlib和ML,二者的主要区别在于MLlib包的操作是基于RDD的,ML包的操作是基于DataFrame的。...根据之前我们叙述过的DataFrame的性能要远远好于RDD,并且MLlib已经不再被维护了,所以在本专栏中我们将不会讲解MLlib。...数据集获取地址1:https://gitee.com/dtval/data.git 数据集获取地址2:公众号后台回复spark 01 评估器简介 ML中的评估器主要是对于机器学习算法的使用,包括预测、...DecisionTreeRegressor 决策树回归 GBTRegressor 梯度提升决策树回归 GeneralizedLinearRegression 广义线性回归 IsotonicRegression 拟合一个形式自由、非递减的行到数据中...03 评估器应用(预测/回归) from pyspark.sql import SparkSession from pyspark.ml.feature import VectorAssembler from

    1.6K10
    领券