1 Keras概述 在TensorFlow2.0中,Keras是一个用于构建和训练深度学习模型的高阶 API。...因此如果你正在使用TensorFow2.0,那么使用Keras构建深度学习模型是您的不二选择。在Keras API中总共有如下三大块: ?...接下来我们了解下在TensorFlow2.0中如何使用损失函数。下图是TensorFlow2.0中所有的损失函数,它们都是Loss的子类。 ?...Sequential 在TensorFlow2.0中,我们可以使用Sequential模型。...TensorFlow2.0中高级API Keras是如何使用的,我们可以看到Keras真的是无处不在,如果你想学好TensorFlow2.0,那么你必须掌握好Kears。
echo $VAR 有没有一种方法可以通过只执行 export.bash 而不 source 它获取 $VAR? 答: 不可以。 但是有几种可能的解决办法。...最明显的方法,你已经提到过,是使用 source 或 ....在调用 shell 的上下文中执行脚本: $ cat set-vars1.sh export FOO=BAR $ . set-vars1.sh $ echo $FOO BAR 另一种方法是在脚本中打印设置环境变量的命令.../set-vars2.sh)" $ echo "$FOO" BAR 在终端上执行 help export 可以查看 Bash 内置命令 export 的帮助文档: # help export export...help eval 相关阅读: 用和不用export定义变量的区别 在shell编程中$(cmd) 和 `cmd` 之间有什么区别 ----
这些资源可以是张量、变量或者运行 Tensorflow程序所需要的资源。我们在训练神经网络时会大量使用集合管理技术。...我们知道TensorFlow2.0非常依赖Keras API,因此如果你使用tf.keras,每个层都会处理自己的变量,当你需要获取可训练变量的列表,可直接查询每个层。...3 删除杂乱的API,重用Keras 之前TensorFlow1.X中包含了很多重复的API或者不推荐使用的 API,杂乱无章,例如可以使用 tf.layers或tf.keras.layers创建图层,...当你学会了读取数据和数据增强后,你就需要学会如何使用TensorFlow2.0构建网络模型,在TensorFlow2.0中搭建网络模型主要使用的就是Keras高级API。...从上面的代码我们可以看出从数据读取到模型定义再到训练和可视化基本用的都是Keras 高级API,这里不再赘述。需要下载数据集的请移步github。
在 TensorFlow 2.0 中,这些组件将被打包成一个综合性平台,支持从训练到部署的机器学习工作流。让我们用一张简化的概念图来看看 TensorFlow2.0 的新架构,如下所示: ?...-2-0-bad2b04c819a)中,我们宣布,用于机器学习的用户友好的 API 标准 Keras (https://www.tensorflow.org/guide/keras)将成为用于构建和训练模型的主要高级...对于大型 ML 训练任务,分发策略 API 使在不更改模型定义的情况下,可以轻松地在不同的硬件配置上分发和训练模型。...强大的研究实验 TensorFlow 2.0 包含了许多功能,可以在不牺牲速度或性能的情况下定义和训练最先进的模型: Keras 功能 API 和 Model Subclassing API:允许创建复杂的拓扑结构...您已经可以使用 tf.keras 和 Eager execution、预打包模型和部署库来开发 TensorFlow2.0 方法。今天,部分分发策略 API 也已经可用。
手动实现(深度)神经网络模型听起来很牛逼,实际上却是一个费时费力的过程,特别是在神经网络层数很多的情况下,多达几十甚至上百层网络的时候我们就很难手动去实现了。...这时候可能我们就需要更强大的深度学习框架来帮助我们快速实现深度神经网络模型,例如Tensorflow/Pytorch/Caffe等都是非常好的选择,而近期大热的keras是Tensorflow2.0版本中非常重要的高阶...Session,由静态计算图变成动态计算图,直接打印结果,不需要执行会话的过程; 3、使用tf.keras构建、训练和验证模型,或使用Premade来验证模型,可以直接标准的打包模型(逻辑回归、随机森林...如果不想从头训练模型,可以使用迁移学习来训练一个使用TensorflowHub模块的Keras或Estimator; 4、使用分发策略进行分发训练,分发策略API可以在不更改定义的情况下,轻松在不同的硬件配置上分发和训练模型...最后,我们使用Tensorflow2.0高阶API keras来实现深度学习经典入门案例——手写数字识别,以下是案例代码,有兴趣的同学可以跟着实现一遍。
我们在定义这个顺序模型的同时添加了相应的网络层,除此之外我们也可以使用“add”方法逐层的添加: model = tf.keras.Sequential() model.add(layers.Dense...图1 输出结果 在训练模型的工程中,为了更好地调节参数,方便模型的选择和优化,我们通常会准备一个验证集,这里我们同样随机生成一个验证集: val_data = np.random.random((100...上面的例子中我们直接在NumPy数据上训练的模型,我们也可以使用“tf.data”将其转为“Dataset”后再传递给模型去训练: # 创建训练集Dataset dataset = tf.data.Dataset.from_tensor_slices...例如模型可能有多输入或多输出,模型中的一些网络层需要共享等等。对于这种网络模型的结构较为复杂的情况,我们需要使用到函数式API。...在“call”方法中我们可以定义模型的正向传递过程。之后就可以调用这个模型。
(11):tf.keras建模三部曲 模型训练好之后,我们就要想办法将其持久化保存下来,不然关机或者程序退出后模型就不复存在了。...本文介绍两种持久化保存模型的方法: 在介绍这两种方法之前,我们得先创建并训练好一个模型,还是以mnist手写数字识别数据集训练模型为例: import tensorflow as tf from tensorflow...save()方法可以将模型保存到一个指定文件中,保存的内容包括: 模型的结构 模型的权重参数 通过compile()方法配置的模型训练参数 优化器及其状态 model.save('mymodels/mnist.h5...需要使用模型时,通过keras.models.load_model()方法从文件中再次加载即可。...,但有时候,我们仅对部分信息感兴趣,例如仅对模型的权重参数感兴趣,那么就可以通过save_weights()方法进行保存。
同时 Tensorflow2.0 也增加了对 Keras 特性的支持,如简化定制化训练循环 API、增加对大部分硬件的分布式策略的支持等。...使用 Keras 和 eager execution 方便地搭建模型 在任何生产平台上都能稳健地部署模型 在研究中可以有力支持实验 简化、去重,并移除生命周期终结的 API 为了更具体地感受新版特性,以下给出了一些参考资料...API,可以在尽量不改动代码的情况下用于分布式训练模型,达到良好的表现。...tf.estimator.DNN/Linear/DNNLinearCombined 系列 API 中的预制 estimator 已经更新了,可以直接使用 tf.keras.optimizers 中的最优化器...', metrics=['accuracy']) 下面,我们可以看看模型训练与评估的风格。
TensorFlow 中构建模型至关重要的一点是对训练和验证数据的有效访问。...指南地址:https://www.tensorflow.org/guide/migrate 谷歌表示,在 TensorFlow2.0 的开发中,开发团队和其他合作伙伴进行广泛的沟通。...同时,对于非 Python 语言的开发者而言,TensorFlow2.0 也提供了 TensorFlow.js (https://www.tensorflow.org/js),官方表示 Swift 语言的版本也在开发中...Keras 和 eager 模式进行更新 在任何平台上都可以进行稳健的模型部署 性能更好的研究实验 简化多种 API 重大更新 许多后端不兼容的 API 更新已经被清理,使得它们更为稳定,更改的 API...其中搭建模型架构可以像堆积木那样完成,编译只需要给定最优化器、损失函数和度量方法三个关键要素就行了。 ? 下面,我们可以看看模型训练与评估的风格。
大多数情况下我们只需要创建一次会话和计算图,之后我们可以在会话中反复执行整个计算图或者其中的某些子图。...模型的参数是保存在变量中的,在模型的训练过程中,参数在不断地更新。变量的值可以修改,但是维度不可以变。) tf.constant(常量,常量定义时必须初始化值,且定义后其值和维度不可再改变。)...使用tf.keras或PremadeEstimators构建、训练和验证模型 tf.keras作为TensorFlow的核心高级API,其已经和TensorFlow的其余部分紧密集成,使用tf.keras...当我们不想从头开始训练一个模型时(例如这个模型的训练可能非常耗时),我们可以使用TensorFlow Hub模块来进行迁移学习。 3....使用eager execution运行和调试模型,以及使用tf.function充分利用计算图的优势 前面已经介绍过,在eager execution模式下,我们可以更加方便的编写和调试代码,在TensorFlow2.0
查看上篇:一文上手Tensorflow2.0之tf.keras|三。在文末作者给出了答疑群的二维码,有疑问的读者可以进群提问。...安装GPU版TF 在2.2节中我们已经安装了CPU版的TensorFlow,为了使用GPU来加速计算,我们必须安装GPU版的TensorFlow。...代码中我们选择了编号为“0”的这个GPU,执行完上面的这段代码后我们使用命令“nvidia-smi”来查看一下GPU的占用情况,如图12所示,编号为“0”的GPU正在被占用。...我们可以将代码中的“0”改为“1”来使用另一个GPU。...图12 查看GPU占用情况 如果我们希望使用多块GPU,例如同时使用“0”、“1”两块GPU,可以设置“os.environ["CUDA_VISIBLE_DEVICES"]= "0,1"”,除此之外我们还可以使用
两种框架都掌握的话,能够参考的开源模型案例更多,并且可以方便地在两种框架之间切换。...Keras可以看成是一种深度学习框架的高阶接口规范,它帮助用户以更简洁的形式定义和训练深度学习网络。...使用pip安装的Keras库同时在tensorflow,theano,CNTK等后端基础上进行了这种高阶接口规范的实现。...而tf.keras是在TensorFlow中以TensorFlow低阶API为基础实现的这种高阶接口,它是Tensorflow的一个子模块。...三、本书面向读者 本书假定读者有一定的机器学习和深度学习基础,使用过Keras或者Tensorflow1.0或者Pytorch搭建训练过模型。
图13 在notebook文件中编写代码 3 TensorFlow2.0使用 3.1 “tf.data”API 除了GPU和TPU等硬件加速设备以外,一个高效的数据输入管道也可以很大程度的提升模型性能...接下来我们用创建的dataset训练一个分类模型,这个例子的目的是让读者了解如何使用我们创建的dataset,为了简单,我们直接使用“tf.keras.applications”包中训练好的模型,...通过“prefetch”方法让模型的训练和每个batch数据集的加载并行 ds = ds.prefetch(buffer_size=AUTOTUNE) 在代码中,我们使用“tf.data.Dataset...代码使用“repeat”方法让数据集可以重复获取,通常情况下如果我们一个“epoch”只对完整的数据集训练一遍的话,可以不需要设置“repeat”。...关于模型的训练部分,我们在后面中会详细介绍。 在本节中我们简单了解了“tf.data”API的使用,在后面章节的项目实战部分我们还会用到该API来构建数据输入管道,包括图像以及文本数据。
在TensorFlow 2.0中,Keras API将成为TensorFlow中构建和训练模型的核心高级API。 ? 在TensorFlow启动项目将变得更简单。...Keras,是一个用于逐层构建模型的框架,可以与多个机器学习框架一起工作,它从一开始就是Pythonic的,设计灵活,易于学习,吸引了不少人的使用和支持。...这就很容易给人一种“PyTorch”真香的感觉。 在TensorFlow2.0中,解决了这个问题。...于是,Keras成了TensorFlow的高级 API,而且是可扩展的,可以直接从tf.keras使用 TensorFlow的所有高级功能。 而且Keras的简单性,也带到了TensorFlow上。...但在讨论中,有不少网友依旧心心念着“PyTorch”。 有人评价称,这还是没有PyTorch好用,PyTorch感觉就像NumPy,可以在一天内学会,然后它就能正常工作。
在TensorFlow 2.0中对大量的高阶API库进行了删减与合并,根据官方的解释,这一切的变化都是为了使TensorFlow2.0更加易用和简洁。...使用tf.keras高阶API构建神经网络模型 在TensorFlow 2.0中可以使用高阶API tf.keras.Sequential进行神经网络模型的构建。示例代码如下: 1....使用tf.keras高阶API训练神经网络模型 在完成神经网络模型的构建和编译之后,需要准备训练数据,然后对神经网络模型进行训练。...使用tf.keras高阶API保存神经网络模型 在完成神经网络模型的训练之后,可以使用Sequential的save方法将训练的神经网络模型保存为H5格式的模型文件。示例代码如下: 1....使用tf.keras高阶API加载模型进行预测 加载神经网络模型需要使用tf.keras.models.load_model这个API,在完成模型的加载后可以使用Sequential的predict
TensorFlow 是一种用于表达机器学习算法的接口,也是一种用于执行此类算法的实现。它是端到端的方式进行机器学习开发,可以帮助我们开发和训练机器学习模型。...我们可以使用 Sequential API 来使用TensorFlow,也可以使用Keras API 调用TensorFlow开源库。初学者推荐使用Keras API ,功能完善,便于开发。...,在TensorFlow中能直接使用Keras API。...灵活开发:支持云端、本地、浏览器中或设备上轻松地训练和部署模型。 强大的研究经验:一个简单而灵活的架构,可以更快地将新想法从概念转化为代码,然后创建出先进的模型,并最终对外发布。...1.6)小结 TensorFlow 是一种在大规模和异构环境中运行的机器学习系统,它是端到端的方式进行机器学习开发,可以帮助我们开发和训练机器学习模型。
但是在我们平时使用时,无论您是做分类还是检测或者分割任务,我们不可能每次都能找到打包好的数据集使用,大多数时候我们使用的都是自己的数据集,也就是我们需要从本地读取文件。...其中800张图片用来训练,200张用来测试,每个类别的样本也是相同的。 1.2 数据预处理 我们知道,在将数据输入神经网络之前,需要将数据格式化为经过预处理的浮点数张量。...是tensorflow.keras.preprocessing.image模块中的图片生成器,同时也可以使用它在batch中对数据进行增强,扩充数据集大小,从而增强模型的泛化能力。...在该分类任务中标签就是smile和neutral。 以上就是在TensorFlow2.0中利用Keras这个高级API来对分类任务中的数据进行预处理。...2 使用Dataset类对数据预处理 由于该方法在TensorFlow1.x版本中也有,大家可以比较查看2.0相对于1.x版本的改动地方。
领取专属 10元无门槛券
手把手带您无忧上云