在本文中,我将分享一些Python函数,它们可以帮助我们进行数据清理,特别是在以下方面: 删除未使用的列 删除重复项 数据映射 处理空数据 入门 我们将在这个项目中使用pandas,让我们安装包。...删除重复项 让我们使用此函数检查此数据集中的重复项。 df[df.duplicated(keep=False)] ? keep允许一些参数检查重复项。...在本例中,我希望显示所有的重复项,因此传递False作为参数。现在我们已经看到这个数据集中存在重复项,我想删除它们并保留第一个出现项。下面的函数用于保留第一个引用。...如果删除了重复项,df[df.duplicated(keep=False)]将返回null。...此列中缺少3个值:-、na和NaN。pandas不承认-和na为空。在处理它们之前,我们必须用null替换它们。
例如,您可能会根据一些条件过滤一些行,然后想要快速知道删除了多少行。 处理重复 这个数据集没有重复的行,但是确认您没有聚合重复的行总是很重要的。...现在我们可以尝试删除重复: temp_df = temp_df.drop_duplicates() print (temp_df.shape) 与append()一样,drop_duplicates()...在本例中,将DataFrames分配给相同的变量有点冗长。因此,pandas的许多方法上都有inplace关键参数。...drop_duplicates()的另一个重要参数是keep,它有三个可能的选项: first:(默认)删除第一次出现的重复项。 last:删除最后一次出现的重复项。 False:删除所有重复项。...另一方面,keep将删除所有重复项。如果两行是相同的,那么这两行都将被删除。
,我仅仅用了64个文字形容词就生成了她,很有初恋的感觉,符合审美观,对于计算机来说她是一组数字,可是这个数字是怎么推断出来的就是很复杂了,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的...OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦,可以在很多AI大佬的文章中发现都有这个...keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表示删除所有重复项...inplace:布尔值参数,默认为 False 表示删除重复项后返回一个副本,若为 Ture 则表示直接在原数据上删除重复项。 subset参数测试 根据参数说明我们知道,是根据列名去重。...df) 数据中能看到我们的age列的赵飞燕行业是NaN,故而直接删除了没有显示。
标签:Python与Excel,pandas 在Excel中,我们可以通过单击功能区“数据”选项卡上的“删除重复项”按钮“轻松”删除表中的重复项。确实很容易!...删除重复值 根据你试图实现的目标,我们可以使用不同的方法删除重复项。最常见的两种情况是:从整个表中删除重复项或从列中查找唯一值。我们将了解如何使用不同的技术处理这两种情况。...图3 在上面的代码中,我们选择不传递任何参数,这意味着我们检查所有列是否存在重复项。唯一完全重复的记录是记录#5,它被丢弃了。因此,保留了第一个重复的值。...图4 这一次,我们输入了一个列名“用户姓名”,并告诉pandas保留最后一个的重复值。现在pandas将在“用户姓名”列中检查重复项,并相应地删除它们。...如果我们指定inplace=True,那么原始的df将替换为新的数据框架,并删除重复项。 图5 在列表或数据表列中查找唯一值 有时,我们希望在数据框架列的列表中查找唯一值。
这是一个关于 pandas 从基础到进阶的练习题系列,来源于 github 上的 guipsamora/pandas_exercises 。...上期文章:pandas每天一题-题目15:删除列的多种方式 后台回复"数据",可以下载本题数据集 如下数据: 1import pandas as pd 2import numpy as np 3 4df...一个订单会包含很多明细项,表中每个样本(每一行)表示一个明细项 order_id 列存在重复 item_name 是明细项物品名称 item_price 是该明细项的总价钱 前面章节讲解过的知识点,本文不再讲解...初学者最常见的错误做法: 1df.query('item_name=="Izze"')['item_price']=3.5 可以看出来,pandas 给出警告!...点评: 这就是为什么 query 和 eval 方法这么方便,我仍然推荐大家学习 bool 列和行索引操作的原因。
keep:表示采用哪种方式保留重复项,该参数可以取值为’first’(默认值)、 'last '和 ‘False’,其中’first’代表删除重复项,仅保留第一次出现的数据项;'last '代表删除重复项...2.3.2 重复值的处理 重复值的一般处理方式是删除,pandas中使用drop_duplicates()方法删除重复值。...,该参数可以取值为’first’(默认值)、 'last ‘和’False’,其中’first’代表删除重复项,仅保留第一次出现的数据项;'last '代表删除重复项,仅保留最后一次出现的数据项;'False...’表示删除所有的重复项。...,但有时我们只需要根据某列查找重复值 df[df.duplicated(['gender'])] # 删除全部的重复值 df.drop_duplicates() # 删除重复值|指定 # 删除全部的重复值
所以我决定先分享pandas能做什么,然后再从基础概念开始分享全面的知识点。我希望我的文章能成为某些朋友的中文API,将来应用遇到困难直接查询我的文章即可!...我自己一行一行的数,数了四个小时,一共有57万多行! ? 如何按照K列镇区的非重复值拆分为独立文件呢! 方法一:勤劳小蜜蜂! ? 刚刚演示了普通劳动人民是如何按照某列拆分一列的!...error代码代表略过有错误的行 df= pd.read_csv(cf) #读取文件 list_township = df['镇区'].drop_duplicates() #删除镇区重复项drop_duplicates...] #将镇区列等于镇区某个关键字的筛选出来赋值给save变量,中括号内是判断条件,df.loc[]代表将符合筛选条件的筛选出来 save.to_csv('D:/拆分后数据/'+ str(township...本期只是解释小编为什么分享pandas,代码只是顺便分享的! 后续我们从pandas最基础的知识开始分享! 如果你有用Excel处理大数据的需求,学习pandas准没有错!
方法一:分别取日期与小时,按照日期和小时删除重复项 import pandas as pd excel_filename = '数据.xlsx' df = pd.read_excel(excel_filename...) # print(df) # 方法一:分别取日期与小时,按照日期和小时删除重复项 df['day'] = df['SampleTime'].dt.day # 提取日期列 df['hour'] =...df['SampleTime'].dt.hour # 提取小时列 df = df.drop_duplicates(subset=['day', 'hour']) # 删除重复项 # 把筛选结果保存为...pandas as pd excel_filename = '数据.xlsx' df = pd.read_excel(excel_filename) # 方法五:对日期时间进行重新格式,并按照新的日期时间删除重复项...本来【瑜亮老师】还想用ceil向上取整试试,结果发现不对,整点的会因为向上取整而导致数据缺失,比如8:15,向上取整就是9点,如果同一天中刚好9:00也有一条数据,那么这个9点的数据就会作为重复的数据而删除
大家好,我是早起。 我想很多人用 Python 就是用 pandas 进行数据分析,并且你大概率每天就用到 pandas 那几个函数处理结构大致相似的数据。...答案是用一个 list,然后将每个按钮对应的事件也用一个list传给后台即可 put_buttons(['检查重复值','删除重复值','检查缺失值','删除缺失值','检查异常值','删除异常值'],...,这对于刷了 pandas300题 的同学来说,完全不是问题 df1 = df[df.国家奥委会.duplicated() == True] 但是这只是用 pandas 将重复值查找出来了,怎样让网页显示出来...这也是为什么,在第一个页面,没有上传文件,后面的页面代码都没有输出,显然如果这里还用同样的方法是不可以的。...但不论如何,我都会在后续的文章中,分享如何用 PyWebIO 开发更多的页面!喜欢这个系列的话可以给本文点赞、留言、在看! 注:本文的完整代码,可以在后台回复 1105 获取!
20 2023-06 AI作品|Pandas处理数据的几个注意事项 给大家直观的感受一下AI的创作能力,以及为什么我说做小众内容原创是打不过AI的~ LEARN MORE 图片由Stable Diffusion...作为一位数据分析师,我有幸能够和许多Pandas使用者进行交流,看到了他们在使用Pandas时所面临的各种问题。...df = df.fillna(df.mean()) 数据清洗 数据清洗是数据处理过程中的一个关键步骤,可以去除重复项、异常值等。...例如下面的例子中,可以使用drop_duplicates和drop方法去除重复项和不需要的列: import pandas as pd #读取CSV文件 df = pd.read_csv('data.csv...') #去除重复项 df = df.drop_duplicates() #去除不需要的列 df = df.drop(['address'], axis=1) 数据重塑 数据重塑可以帮助我们进行更加细致的分析和可视化展示
pandas 中怎么指定列顺序?...非常简单: 往 df[] 中指定多个列名的 list 即可 显然,提问者就是不希望手工输入所有的列表 pandas 中怎么获取表的所有列名: df.columns 即可。...---- 解法2 "Python 不是一直声称语法简单吗,为什么不可以把 2 个列表相减,就得到剩余列名?" 这想法还挺有道理的,为什么不呢?...因为列表中的元素是可以重复的,如果 2 个列表能相减,他就要考虑有重复元素与没有重复元素的歧义。...pandas 中不也有去重功能吗,我们也可以用上。 行4:pd.Series 中传入有重复元素的列表,就能返回一个 Series。使用他的去重方法即可完成 "有问题啊,new_cols 是列表?
今天我想和大家分享一下关于爬虫数据的整理与处理的技巧,并介绍一些Python爬虫的实践经验。如果你正在进行数据工作,那么整理和处理数据是无法避免的一项工作。...2.数据整理之去除重复项 ```python df=df.drop_duplicates() ``` 在爬虫数据中,可能会存在一些重复的数据项,对于后续的分析和处理,这些重复项是没有意义的。...使用drop_duplicates()函数可以快速去除重复项。 ...3.数据整理之处理缺失值 ```python df=df.dropna()#删除包含缺失值的行 df=df.fillna(0)#将缺失值替换为指定值 ``` 数据中常常会存在缺失值,对于这些缺失值...4.数据整理之处理异常值```pythondf=df[(df['列名']>下限值)&(df['列名']中,有时会出现一些异常值,可能是采集过程中的错误或异常情况导致的。
参考链接: 遍历Pandas DataFrame中的行和列 有如下 Pandas DataFrame: import pandas as pd inp = [{'c1':10, 'c2':100}, {...对于每一行,都希望能够通过列名访问对应的元素(单元格中的值)。...我找到了similar question。...但这并不能给我需要的答案,里面提到: for date, row in df.T.iteritems(): 要么 for row in df.iterrows(): 但是我不明白row对象是什么,以及我如何使用它...改用DataFrame.apply():new_df = df.apply(lambda x: x * 2) itertuples:列名称将被重命名为位置名称,如果它们是无效的Python标识符,重复或以下划线开头
大家好,我是东哥。 继续更新pandas数据清洗,上一篇说到缺失值的处理。 链接:pandas 缺失数据处理大全(附代码) 感兴趣可以关注这个话题pandas数据清洗,第一时间看到更新。...所有数据和代码可在我的GitHub获取: https://github.com/xiaoyusmd/PythonDataScience 本次来介绍重复值处理的常用方法。...主要参数: subset:如果不按照全部内容查重,那么需要指定按照哪些列进行查重。...,还需要和查询的方法配合使用df[df.duplicated()],比如: # 1、按user变量筛选重复值 frame[frame.duplicated(subset=['user'])] -----...默认为False,是否直接在原数据上删除重复项或删除重复项后返回副本。
就我个人而言,我更喜欢第二种方法,它只涉及两个步骤。...0.160913 0.971951 Y 3 0.548012 0.288583 0.734276 X 4 0.581093 0.750331 0.133022 Y 删除重复项后重置索引...当我们处理现实生活中的数据集时,经常会出现重复记录的情况。...C team 0 0.548012 0.288583 0.734276 X 1 0.378794 0.160913 0.971951 Y 如上所示,在“team”列删除重复项之后...总结 在本文中,我们回顾了在pandas中最常见的索引操作。熟悉它们对你处理pandas的数据非常有帮助。当然,我没有讨论MultiIndex,这可以在以后的文章中讨论。 作者:Yong Cui
对于每一行,都希望能够通过列名访问对应的元素(单元格中的值)。...我找到了similar question。...但这并不能给我需要的答案,里面提到: for date, row in df.T.iteritems(): 要么 for row in df.iterrows(): 但是我不明白row对象是什么,以及我如何使用它...,重复或以下划线开头。...c1=12, c2=120)] 或与pd.DataFrame.itertuples: list(df.itertuples(index=False)) [Pandas(c1=10, c2=100), Pandas
大家好,我是小五 之前黄同学曾经总结过一些Pandas函数,主要是针对字符串进行一系列的操作。在此基础上我又扩展了几倍,全文较长,建议先收藏。...df.shape 输出: (5, 2) 另外,len()可以查看某列的行数,count()则可以查看该列值的有效个数,不包含无效值(Nan)。...缺失值与重复值 Pandas清洗数据时,判断缺失值一般采用isnull()方法。...df.fillna(50) 输出: Pandas清洗数据时,判断重复值一般采用duplicated()方法。如果想要直接删除重复值,可以使用drop_duplicates() 方法。...df.T 输出: 删除行列,可以使用drop()。
Python 中的None,Pandas 会自动把None转变成NaN。...np.nan, 4, 6]]) df.isnull().sum().sum() # 统计缺失值的个数 2 在缺失值的处理方法中,删除缺失值是常用的方法之一。...# 识别重复值——duplicated()、删除重复值——drop_duplicates() df2 = pd.DataFrame({ 'brand': ['Yum Yum', 'Yum Yum...df2.duplicated() df2.duplicated(keep=False) # 只查看sytle列上的重复项 # 除第一个重复项外,其他重复项均标记为True df2.duplicated...df2.drop_duplicates(inplace=True) df2 # 只删除brand列上的重复项 df2.drop_duplicates(['brand'],inplace=True) df2
Pandas 是一个用于高效处理结构化数据的Python库,特别适合处理 表格数据(类似Excel中的表格),比如金融数据、实验记录等。...数据筛选和处理 Pandas为我们提供了强大的数据操作功能,例如数据筛选、处理缺失值、删除重复行等操作。...(0, inplace=True) 删除重复行: df.drop_duplicates(inplace=True) 5....常见问题解答 (QA) Q1: 为什么我安装Pandas时遇到权限错误?...删除重复行 df.drop_duplicates() 删除重复行 数据可视化 df['城市'].value_counts().plot() 使用Matplotlib绘图 总结 通过本篇博客,大家学习了
一个订单会包含很多明细项,表中每个样本(每一行)表示一个明细项 order_id 列存在重复 quantity 是明细项数量 需求:数据中共有多少个订单?...下面是答案了 ---- 方式1 因为 order_id 列是存在重复的,那么一种比较直观的方式就是去重+计数: len(df.order_id.drop_duplicates()) 1834 Series.drop_duplicates...,经过去重后只会保留一个 nan 值 ---- 方式3 实际上,pandas 本身有提供一个忽略 nan 的计数方法: df.order_id.drop_duplicates().count() 点评...并且排除 nan 这相当于实现了去重,因此: df.order_id.value_counts().count() 点评: 这是原项目的解法,不太直观,不推荐使用 我本人经常把 value_counts...方法中s的位置搞错 不过我自制了一个方法查询器,这样子不至于记错方法: 推荐阅读: python 方法太多了,怎么记住?
领取专属 10元无门槛券
手把手带您无忧上云