首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

怎样写正规借条

正规借条撰写指南

在撰写借条时,请遵循以下步骤以确保您所写的借条正规且有效:

  1. 标题:在纸条顶部写上“借条”或“借款协议”以明确文件性质。
  2. 当事人信息:在借条中详细列明借款人(甲方)和贷款人(乙方)的姓名、身份证号、联系方式和地址。
  3. 借款金额:清楚地写明借款金额,以数字和大写中文数字表示。
  4. 借款期限:明确借款期限,包括借款开始日期和还款日期。
  5. 利息:如果需要,可以注明利息率和利息金额,以及利息支付方式。
  6. 还款方式:详细说明还款方式,如分期付款、一次性还款等,并注明还款时间节点。
  7. 逾期处理:注明逾期还款的处理方式,如罚息、违约金等。
  8. 争议解决:约定在发生争议时,通过仲裁或诉讼的方式解决。
  9. 附加条款:如果有其他特殊要求或约定,可以在此部分详细说明。
  10. 签名和日期:双方在借条末尾签名并注明签署日期。
  11. 附件:如果有相关附件,如抵押物、担保人等,应在借条中注明。

请注意,本指南仅供参考,具体条款可能因国家/地区和具体情况而有所不同。在签署借条前,请咨询专业律师的意见。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

正规方程

一、什么是正规方程梯度下降法计算参数最优解,过程是对代价函数的每个参数求偏导,通过迭代算法一步步更新,直到收敛到全局最小值,从而得到最优参数。正规方程是一次性求得最优解。...二、正规方程的使用举例如下:?这里4个样本,以及4个特征变量x1,x2,x3,x4,观测结果是y,在列代价函数的时候,需要加上一个末尾参数x0,如下:?...三、不可逆情况注意到正规方程有一个 求逆矩阵的过程,当矩阵不可逆,一般有两种原因:多余特征(线性相关)太多特征(例如:m≤n),解决办法:删除一些特征,或正则化其实,本质原因还是线性知识:首先,这是两个必要条件...= 0时可逆四、正规方程与梯度下降法的比较梯度下降法:缺点:需要选择学习率α需要多次迭代优点:当特征参数大的时候,梯度下降也能很好工作正规方程:缺点:需要计算 ,计算量大约是矩阵维度的三次方,复杂度高...特征参数大的时候,计算缓慢优点:不需要学习率α不需要多次迭代总结:取决于特征向量的个数,数量小于10000时,选择正规方程;大于10000,考虑梯度下降或其他算法。

2.8K30
  • 机器学习系列 6:正规方程

    答案是有的,可以用正规方程(Normal Equation)去求参数。 那么问题来了,什么是正规方程呢?这个方程长什么样子,就让我们来见识一下。 ?...这样通过正规方程就可以很容易地求出参数 θ(一定要注意,这里的参数 θ 是一个向量)。...既然求参数 θ 有两种方法,一个为梯度下降法,一个为正规方程,那么他俩之间一定会有优缺点,下表就是这两种方法的优缺点的对比: ?...当特征值 n 非常大时,正规方程工作效率低的原因是要求一个非常大的矩阵的逆矩阵。 提到逆矩阵,就会出现矩阵的不可逆性,如果我们遇到了矩阵不可逆该怎么办呢?...正规方程有两种情况会出现不可逆性,也就是这个矩阵无法得出。 ? 第一种情况:出现了两个相似的特征,这个两个特征可以用一个线性关系进行表示。

    81110

    电脑如何下载正规软件

    正规”软件要求退出,杀毒软件者都有点不正规。因为原代码里面多多少少病毒!或者有不正规的采样:监控,监听,收集信息…反正通过不了杀毒软件是肯定有风险。...正规的软件要去正规的,“官方网站”进行下载… 一定要认准“官方”标志?他们的官方网站是通过正规认证机构“认证” 关于官方网站认证图标有哪些?...………………………………………… 建议大家下载正规的软件具有安全保障 ………………………………………… 注意:不正规的软件也可以下载,但是下载时请谨慎。...———————————————— 小白注意:特别是小白下载,无法判断是否正规下载下来。出来好多捆绑软件!建议小白下载“腾讯管家”软件管理,进行安全下载。

    2.7K10

    【机器学习】浅谈正规方程法&梯度下降

    该文章收录专栏 ✨— 机器学习 —✨ 专栏内容 ✨— 【机器学习】浅谈正规方程法&梯度下降 —✨ ✨— 机器学习】梯度下降之数据标准化 —✨ ✨— 第十届“泰迪杯“感谢学习总结—✨ 【机器学习...】 一、梯度下降 1.1 一个参数 1.2梯度下降核心方程 1.3学习率 1.4两个参数 1.5多个参数 1.6数据标准化 二、正规解法 2,1 使用场景和优缺点 2.2 正规方程(不可逆性)*...选读 正规方程法(最小二乘)与梯度下降法都是为了求解线性回归的最优参数,但是不同的是正规方程法只需要一步就可以得到代价函数最优点,而梯度下降则是迭代下降,看起来似乎正规方程法要好得多,但实际梯度下降使用场景更多...(后面所讲的正规方程解法就是直接令代价函数为0,求解 参数的) 1.2梯度下降核心方程 迭代求解方程 图片 其中 是学习率, 是对代价函数 求关于 的偏导数,由于只有一个参数(一阶...对正规解法来说,一般例子是对代价函数 求偏导数,令其为 0 便可以直接算出 最优参数 ,但大多数情况下 是一个多维向量(即有多个参数 ),此时代价函数 是关于 多维向量的函数,

    1.5K50
    领券