某初创企业的主营业务是为用户提供高度个性化的商品订购业务,其业务系统支持PC端、手机App等多种访问方式。系统上线后受到用户普遍欢迎,在线用户数和订单数量迅速增长,原有的关系数据库服务器不能满足高速并发的业务要求。 为了减轻数据库服务器的压力,该企业采用了分布式缓存系统,将应用系统经常使用的数据放置在内存,降低对数据库服务器的查询请求,提高了系统性能。在使用缓存系统的过程中,企业碰到了一系列技术问题。
相信朋友对SQL Server性能调优相关的知识或多或少都有一些了解。虽然说现在NOSQL相关的技术非常的火热,但是RMDB(关系型数据库)与NOSQL是并存的,并且适用在各种的项目中。在一般的企业级开发中,主要还是RMDB占据主导地位。并且在互联网项目中,也不是摒弃了RMDB,例如MySQL就在很多的互联网应用中发挥着作用。所以,对数据库的调优是个值得深入学习的课题。本系列文章,主要讲述与SQL Server相关的调优知识,希望能够为朋友们带来一些帮助。 本篇提纲如下: 传统SQL Server调优方式的
前面一篇文章中我已经对项目的基本情况进行了简单的介绍,今天就开始动手针对系统进行性能调优。在性能调优上面说实话我算是个菜鸟,并没有太多的经验和扎实的基础,所以有错误的地方希望大家指出。
在估算之前我们必须清楚这台数据库服务器的配置是什么情况,正常情况下我们需要摸清楚以下几点因素:
性能测试为保证软件质量起到重要作用,对于交易量较大的应用系统,性能测试更是一个必不可少的环节。
1.请求数量较高,大量的请求过来之后都需要去从缓存中获取数据,但是缓存中又没有,此时从数据库中查找数据然后将数据再存入缓存,造成了短期内对redis的高强度操作从而导致问题
1 关系型数据库 关系型数据库把所有的数据都通过行和列的二元表现形式表示出来。它的优势: 保持数据的一致性(事务处理) 由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处) 可以进行Join等复杂查询 能够保持数据的一致性是关系型数据库的最大优势 关系型数据库的性能非常高,但是它毕竟是一个通用型的数据库,并不能完全适应所有的用途,具体来说它并不擅长以下处理: 大量数据的写入处理。 为有数据更新的表做索引或表结构(schema)变更 字段不固定时应用 对简单查询需要快速返回结果的处理 大量数据
1、硬件调整性能 最有可能影响性能的是磁盘和网络吞吐量,解决办法 扩大虚拟内存,并保证有足够可以扩充的空间;把数据库服务器上的不必要服务关闭掉 把数据库服务器和主域服务器分开 把SQL数据库服务器的吞吐量调为最大 在具有一个以上处理器的机器上运行SQL 2、调整数据库 若对该表的查询频率比较高,则建立索引;建立索引时,想尽对该表的所有查询搜索操作, 按照where选择条件建立索引,尽量为整型键建立为有且只有一个簇集索引,数据在物理上按顺序在数据页上,缩短查找范围,为在查询经常使用的全部列建立非簇集索引,能最大地覆盖查询;但是索引不可太多,执行UPDATE DELETE INSERT语句需要用于维护这些索引的开销量急剧增加;避免在索引中有太多的索引键;避免使用大型数据类型的列为索引;保证每个索引键值有少数行。 3、使用存储过程 应用程序的实现过程中,能够采用存储过程实现的对数据库的操作尽量通过存储过程来实现,因为存储过程是存放在数据库服务器上的一次性被设计、编码、测试,并被再次使用,需要执行该任务的应用可以简单地执行存储过程,并且只返回结果集或者数值,这样不仅可以使程序模块化,同时提高响应速度,减少网络流量,并且通过输入参数接受输入,使得在应用中完成逻辑的一致性实现。 4、应用程序结构和算法 建立查询条件索引仅仅是提高速度的前提条件,响应速度的提高还依赖于对索引的使用。因为人们在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,特别是对数据量不是特别大的数据库操作时,是否建立索引和使用索引的好坏对程序的响应速度并不大,因此程序员在书写程序时就忽略了不同的实现方法之间可能存在的性能差异,这种性能差异在数据量特别大时或者大型的或是复杂的数据库环境中(如联机事务处理OLTP或决策支持系统DSS)中表现得尤为明显。在工作实践中发现,不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。在对它们进行适当的优化后,其运行速度有了明显地提高!
在安装、部署Oracle数据库软件时,需要根据不同应用结构(即硬件平台、操作系统平台)采用不同的方法(基本安装、高级安装),下面介绍几种常见的应用结构。
造成第三条语句执行时间如此长的主要原因就是大量的 OR 语句会导致 SQL 解析非常耗时.
数据库的弹性伸缩与WebServer相比,复杂了很多倍,对于WebServer的弹性伸缩直接用负载均衡+弹性伸缩组件搞定。但对于数据库的扩容、缩容将面临数据不一致等问题。这些问题在互联网企业上云是必须解决的,为提升我们对大型业务上云的理解,我们今天一起来看一看。
一个程序员很有必要熟悉或者精通一种数据库,MySQL无疑是首选。为什么使用MySQL呢,因为它是开源的,同时具备轻量、简单、稳定和高性能等特点,尤其是其学习成本相对其他数据库,比如Oracle和Sybase更简单,入门更低。MySQL的应用范围从中小型Web网站到大型的企业级应用随处都可见它的身影。 关系型数据库 关系型数据库把所有的数据都通过行和列的二元表现形式表示出来。它的优势: 保持数据的一致性(事务处理) 由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处) 可以进行Join等复杂查
大家好!我是黄啊码,MySQL的入门篇已经讲到第10个课程了,前面的课程归属小白篇,今天我们就来讲讲大白篇系列——性能优化
MySQL提供了一系列工具来监视、调试和优化数据库性能,以下是常用的工具和相关技术,可以帮助您有效管理和优化MySQL数据库的性能。
系列回顾 在前面的文章DotNET企业架构应用实践-系统架构与性能-理论依据及相关做法一文中我介绍了系统性能优化的理论做了一个概括的介绍,也简单的介绍了性能优化的过程及相关的技术关注点或者说是做法。 本文将基于系统架构与程序设计两方面入手,介绍系统架构与性能优化方向一种技术实践:缓存技术与ORM缓存查询。 缓存介绍 前面的文章DotNET企业架构应用实践-系统架构与性能-理论依据及相关做法我在系统优化的理论依据中简单的提到了CPU中的调整缓存操作系统中内存管理的分页和分段
MySQL是当今最通用的数据库软件之一,也是大部分人接触最多,时间最长的数据库软件之一。深入了解MySQL的架构和设计对于DBA,研发和运维都非常重要,能够帮助我们在日常工作中更好地理解和运用MySQL。
某年某月某日的一个下午,接收到监控服务器的一条告警短信:尊敬的运维工程师 XX,你好:“192.168.136.200”数据库服务器 CPU 异常,CPU 使用率 98.7%,请尽快处理。看到这个消息浑身一紧,赶紧掐灭手中的烟,跑回办公室。
随着计算机系统规模变得越来越大,将所有的业务单元集中部署在一个或若干个大型机上的体系架构,已经越来越不能满足当今计算机系统。同时,随着微型计算机的出现,越来越多廉价的PC机成为了各大企业IT架构的首选,分布式的处理方式越来越受到业界的青睐。本文将介绍分布式架构的发展历史和分布式架构的一些相关概念。
查询缓存是一种数据库性能优化技术,它允许数据库系统缓存已经执行过的查询结果,以便在后续相同的查询请求中直接返回缓存的结果,而不必再次执行相同的查询。
大部分Java系统性能问题基本上是由于错误的数据库访问方式引起的,带来了大量额外日志和内存消耗,这些都会对JVM的垃圾回收造成冲击影响,本文主要针对这种错误的数据库访问方式进行分析和诊断。
最近系统(基于SpringCloud+K8s)上线,运维团队早上8点左右在群里反馈,系统登录无反应!我的第一反应是Mysql数据库扛不住了。
数据库专题(一) ——数据库优化 (原创内容,转载请注明来源,谢谢) 一、概述 数据库的优化通常分为三个方面:数据库DML、DQL的优化(即增删改查等SQL语句优化);数据库设计优化(如索引设置、索引类型、表引擎、冗余字段、主键外键等);数据库服务器和配置优化(如主从分离、读写分离等)。 根据不同的业务场景,需要进行不同的优化措施。 二、数据库语句优化 程序对数据库的操作,绝大部分来自查询,因此查询的优化至关重要,而大部分情况下,查询的优化在于索引命中率。网络上有很多查询优化的例子,在此主要说几点。
之前做的压测性能标准、产品说明书的性能需求部分、运营人员提出的性能指标、通过生产环境换算出的性能指标等
要设计出一套能支撑几十亿人的系统是很困难的。对于软件架构师来说,这一直是一项很大的挑战,但是,从现在开始,看完我的文章,你就会觉得容易很多了。
开发一个网站的应用程序,当用户规模比较小的时候,使用简单的:一台应用服务器+一台数据库服务器+一台文件服务器,这样的话完全可以解决一部分问题,也可以通过堆硬件的方式来提高网站应用的访问性能,当然,也要考虑成本的问题。
在我们日常的测试工作中,不可避免的要对mysql的性能进行测试,对于大部分测试人员而言,工具的选择可能就是第一道门槛。
最近系统(基于 SpringCloud + K8s)上线,运维团队早上 8 点左右在群里反馈,系统登录无反应!我的第一反应是 MySQL 数据库扛不住了。
1、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 orderby 涉及的列上建立索引;
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
mysql是一个高度定制化的数据库系统,提供了很多配置参数,一般都需要根据应用程序的特性和硬件情况对mysql做配置优化,windows配置文件为my.ini,linux为my.cnf
MySQL-show-process命令是一种用于展示所有连接到 MySQL 数据库服务器的会话信息的命令。它能帮助我们诊断性能问题以及监控数据库服务器运行状况。通过展示当前正在执行的查询和其他有关会话的详细信息,以便我们了解服务器的工作内容和潜在问题。
之前我们讲过架构设计的一些原则,和架构设计的方法论,今天我们谈谈高性能数据库集群的设计与应用。
前言 高并发经常会发生在有大活跃用户量,用户高聚集的业务场景中,如:秒杀活动,定时领取红包等。 为了让业务可以流畅的运行并且给用户一个好的交互体验,我们需要根据业务场景预估达到的并发量等因素,来设计适合自己业务场景的高并发处理方案。 在电商相关产品开发的这些年,我有幸的遇到了并发下的各种坑,这一路摸爬滚打过来有着不少的血泪史,这里进行的总结,作为自己的归档记录,同时分享给大家。 服务器架构 业务从发展的初期到逐渐成熟,服务器架构也是从相对单一到集群,再到分布式服务。 一个可以支持高并发的服务少不了好的服
高并发经常会发生在有大活跃用户量,用户高聚集的业务场景中,如:秒杀活动,定时领取红包等。
高并发经常会发生在有大活跃用户量和用户高聚集的业务场景中,如:秒杀活动、定时领取红包等。
设计一个拥有上百万用户的系统是很有挑战性的,这将是一个不断优化、持续改进的过程。在本章中,我们先创建一个单用户的系统,然后逐渐将其扩展成可以服务上百万用户的系统。读完本章,你将掌握几个能帮助你破解系统设计面试难题的技巧。
万里征途总是从第一步开始的,构建一个复杂系统也是如此。我们从简单的部分着手,先让所有的功能都在一个服务器上运行。图1-1展示了如何配置单台服务器,让一切都在其上运行,包括Web应用、数据库、缓存等。
数据库(DataBase):数据库是按照数据结构来组织、存储和管理数据的仓库。数据库管理系统(Database Management SystemDBMS):是专门用于管理数据库的计算机系统软件。数据库管理系统能够为数据库提供数据的定义、建立、维护、查询和统计等操作功能,并完成对数据完整性、安全性进行控制的功能。
某电子商务公司为了更好地管理用户,提升企业销售业绩,拟开发一套用户管理系统。该系统的基本功能是根据用户的消费级别、消费历史、信用情况等指标将用户划分为不同的等级,并针对不同等级的用户提供相应的折扣方案。在需求分析与架构设计阶段,电子商务公司提出的需求、质量属性描述和架构特性如下: (a)用户目前分为普通用户、银卡用户、金卡用户和白金用户四个等级,后续需要能够根据消费情况进行动态调整; (b)系统应该具备完善的安全防护措施,能够对黑客的攻击行为进行检测与防御; (c)在正常负载情况下,系统应在0.5秒内对用户的商品查询请求进行响应; (d)在各种节假日或公司活动中,针对所有级别用户,系统均能够根据用户实时的消费情况动态调整折扣力度; (e)系统主站点断电后,应在5秒内将请求重定向到备用站点; (f)系统支持中文昵称,但用户名要求必须以字母开头,长度不少于8个字符; (g)当系统发生网络失效后,需要在15秒内发现错误并启用备用网络; (h)系统在展示商品的实时视频时,需要保证视频画面具有1024x768像素的分辨率,40帧/秒的速率; (i)系统要扩容时,应保证在10人●月内完成所有的部署与测试工作; (j)系统应对用户信息数据库的所有操作都进行完整记录; (k)更改系统的Web界面接口必须在4人●周内完成; (l)系统必须提供远程调试接口,并支持远程调试。 在对系统需求、质量属性描述和架构特性进行分析的基础上,该系统架构师给出了两种候选的架构设计方案,公司目前正在组织相关专家对系统架构进行评估。
连接者:不同语言的代码程序和mysql的交互(SQL交互) 1、连接池 管理、缓冲用户的连接,线程处理等需要缓存的需求 2、管理服务和工具组件 系统管理和控制工具,例如备份恢复、Mysql复制、集群等 3、sql接口 接受用户的SQL命令,并且返回用户需要查询的结果 4、查询解析器 SQL命令传递到解析器的时候会被解析器验证和解析(权限、语法结构) 5、查询优化器 SQL语句在查询之前会使用查询优化器对查询进行优化 select id,name from user where age = 40; a、这个select 查询先根据where 语句进行选取,而不是先将表全部查询出来以后再进行age过滤 b、这个select查询先根据id和name进行属性投影,而不是将属性全部取出以后再进行过滤 c、将这两个查询条件联接起来生成最终查询结果 6、缓存 如果查询缓存有命中的查询结果,查询语句就可以直接去查询缓存中取数据 7、插入式存储引擎 存储引擎说白了就是如何管理操作数据(存储数据、如何更新、查询数据等)的一种方法。因为在关系数据库 中数据的存储是以表的形式存储的,所以存储引擎也可以称为表类型(即存储和操作此表的类型)
a. 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。 b. 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from t where num is null 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: select id from t where num=0
集群 小饭店原来只有一个厨师,切菜洗菜备料炒菜全干。后来客人多了,厨房一个厨师忙不过来,又请了个厨师,两个厨师都能炒一样的菜,这两个厨师的关系是集群。
一、简介 数据库服务器需要CPU、内存、 磁盘和网络才能运行,了解这些资源对于DBA来说非常重要,因为任何的超载行为都可能成为限制因素,导致数据库服务器性能不佳。DBA的主要任务就是调整系统和数据库的配置,避免可用资源的过渡利用和利用不足。 首先,性能优化是一个持续的过程,安装MySQL通常是调整操作系统和数据库配置的第一步。而数据库是一个动态系统,这是一个永无止境的故事。你的MySQL数据库起初可能是CPU绑定的,因为你有足够的内存和很少的数据。随着时间地推移,它可能会改变,磁盘访问可能会变得更加频繁。正
领取专属 10元无门槛券
手把手带您无忧上云