3、 DataFrame数据结构 DataFrame表示的是矩阵数据表,每一列可以是不同的值类型(数值、字符串、布尔值等)。...3.1 DataFrame的构建 DataFrame有多种构建方式,最常见的是利用等长度的列表或字典构建(例如从excel或txt中读取文件就是DataFrame类型)。...另外一个构建的方式是字典嵌套字典构造DataFrame数据;嵌套字典赋给DataFrame,pandas会把字典的键作为列,内部字典的键作为索引。...(*4)索引对象的特征和操作 索引对象的重要特征是不可变的,因此我们无法修改索引对象(初学者常常忽略这一点)。...4.1 重建索引 reindex是pandas对象的重要方法,该方法创建一个符合条件的新对象。如果某个索引值之前并不存在,则会引入缺失值;在这里注意与上一篇文章2.2的区别。
还是dataframe,均支持面向对象的绘图接口 正是由于具有这些强大的数据分析与处理能力,pandas还有数据处理中"瑞士军刀"的美名。...自然毫无悬念 dataframe:无法访问单个元素,只能返回一列、多列或多行:单值或多值(多个列名组成的列表)访问时按列进行查询,单值访问不存在列名歧义时还可直接用属性符号" ....isin/notin,条件范围查询,即根据特定列值是否存在于指定列表返回相应的结果 where,仍然是执行条件查询,但会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...两种数据结构作图,区别仅在于series是绘制单个图形,而dataframe则是绘制一组图形,且在dataframe绘图结果中以列名为标签自动添加legend。
导读 Pandas之于日常数据分析工作的重要地位不言而喻,而灵活的数据访问则是其中的一个重要环节。本文旨在讲清Pandas中的9种数据访问方式,包括范围读取和条件查询等。 ?...通常情况下,[]常用于在DataFrame中获取单列、多列或多行信息。具体而言: 当在[]中提供单值或多值(多个列名组成的列表)访问时按列进行查询,单值访问不存在列名歧义时还可直接用属性符号" ....4. isin,条件范围查询,一般是对某一列判断其取值是否在某个可迭代的集合中。即根据特定列值是否存在于指定列表返回相应的结果。 5. where,妥妥的Pandas仿照SQL中实现的算子命名。...这里仍然是执行条件查询,但与直观不大相符的是这里会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值 ? 6. query,提到query,还得多说两句。...尤其是在执行链式查询时,例如可参考历史推文:Pandas用了一年,这3个函数是我的最爱……。当然,这种用法一般都可用常规的条件查询替代。 ?
Pandas实用手册(PART I)中,介绍了建立DataFrame以及定制化DataFrame显示设定两大类技巧。发现已经有同学留言催更了??...处理空值 世界总是残酷,很多时候手上的DataFrame里头会有不存在的值,如底下一格格额外显眼的NaN: ? 你可以利用fillna函数将DataFrame里头所有不存在的值设为0: ?...当然,这个操作的前提是你确定在当前分析的情境下,将不存在的值视为0这件事情是没有问题的。...条件选取数据 在pandas 里头最实用的选取技巧大概非遮掩(masking)莫属了。masking让pandas 将符合特定条件的样本回传: ?...选取某栏位为top-k值的样本 很多时候你会想选取在某个栏位中前k大的所有样本,这时你可以先利用value_counts函数找出该栏位前k多的值: ?
今天我们来看看在 pandas 中如何做到条件统计。...以下是 Excel 的公式做法: 那么 pandas 的做法呢? 想必聪明的你一定大概知道怎么做,pandas 中求平均的是方法 mean: - 行3:同样语义非常清晰。...."住址是New York 的人数" Excel 的 xxifs 类函数公式都能支持通配符: - 前后用 * 包围内容,表示包含此内容即符合条件 在 pandas 中,由于筛选与统计是独立分开的,因此只需要知道怎么筛选...如果本身内容是 nan(不存在值) ,那么直接赋值为 False 如果我们只需要 住址 结尾是 NY 的人数?...一次解决所有问题 以上 pandas 的做法主要有以下问题: - 不能用通配符表达不同的文本规则,只能用不同的方法,我记不住这么多方法呀 - 不能忽略大小写(实际上面的需求,pandas 的结果更合理
pandas中的SUMIF 使用布尔索引 要查找Manhattan区的电话总数。布尔索引是pandas中非常常见的技术。本质上,它对数据框架应用筛选,只选择符合条件的记录。...“未指定”类别可能是由于缺少一些数据,这里不重点讨论这些数据。 Pandas中的SUMIFS SUMIFS是另一个在Excel中经常使用的函数,允许在执行求和计算时使用多个条件。...本质上是使用按位与运算符&将两个条件结合起来。注意,这两个条件周围的括号是必不可少的。...(S),虽然这个函数在Excel中不存在 mode()——将提供MODEIF(S),虽然这个函数在Excel中不存在 小结 Python和pandas是多才多艺的。...虽然pandas中没有SUMIF函数,但只要我们了解这些值是如何计算的,就可以自己复制/创建相同功能的公式。
描述性分析的难点在于对业务的了解和对数据的寻找。 统计推断和统计建模,建立解释变量与被解释变量之间可解释的、稳定的、最好是具有因果关系的表达式。...在模型运用时,将解释变量(自变量)带入表达式中,用于预测被解释变量(因变量)的值。...比如说「浅谈数据分析岗」中薪水与教育程度之间的关系,教育程度为一个多分类的分类变量。 01 单因素方差分析 单因素方差分析的前提条件: ①变量服从正态分布(薪水符合)。...这里组间均方与组内均方的比值是服从F分布,下面贴出F分布曲线图。 ? 其中横坐标为F值,即组间均方与组内均方的比值。 当F值越大时,即组间均方越大、组内均方越小,说明组间的变异大。...单样本t检验原假设:总体均值与假设的检验值不存在显著差异(无差异)。 双样本t检验原假设:两个样本均值(二分变量下的均值)不存在显著差异(无差异)。
---- 第二招 Pandas 库读取数据 在日常数据分析中,使用pandas读取数据文件更为常见。...pandas不仅可以读取open()函数所读取的文本文件及其他各类文件,最重要的是pandas读取结果为DataFrame数据框,后续的数据处理更为方便。...header参数可以是一个list例如:[0,1,3],这个list表示将文件中的这些行作为列标题(意味着每一列有多个标题),介于中间的行将被忽略掉(例如本例中的2;本例中的数据1,2,4行将被作为多级标题出现...重写此值以接收unicode数组, 并将字符串作为输入传递给转换器。如果没有设置, 使用系统默认值。默认值是"bytes"。...sep : str 字符串, 如果文件是文本文件, 那么该值为数据间的分隔符。空("")分隔符表示该文件应该作为二进制文件处理。分隔符中的空格(" ")匹配零个或多个空格字符。
|错误信息,可设置为ignore,表示如果key不存在则忽略错误,也可设置为raise,表示如果key不存在则报错进行提示。...默认值为raise|sep|多层key之间的分隔符,默认值是....-- -->'name': 'Jacqueline'} ], } pd.json_normalize(json_obj) 此例中students键对应的值是一个列表,使用[]括起来。...当Key不存在时如何忽略系统报错 data = [ {<!...此时,我们需要先根据多个嵌套列表的key将Json解析成多个DataFrame,再将这些DataFrame根据实际关联条件拼接起来,并去除重复值。 json_obj = {<!
尤其是’表格1.xlsx’完全不用手工输入,只要输入英文双引号,然后就可以按Tab键滚动到底部直接选择文件名。...2 合并表格 如上所示,表格1和表格2都是某个活动的问卷数据,其中表格1包含了每个学员的联系电话、收件地址等信息,表格2包含了每个学员的考试成绩、出勤记录等信息。...1中不存在的学员会被忽略。...可以把left改为right就会以表格2为准,也可以改为outer同时保留两个表格所有的学员姓名,或者改为inner只保留那些同时存在于两个表格中的学员。...如果不输入这个how的话会默认为是inner。
Python中的pandas是大家常用的数据处理工具,能应付较大数据集(千万行级别),但当数据量达到十亿百亿行级别,pandas处理起来就有点力不从心了,可以说非常的慢。...当然pandas可以通过chunk分批读取数据,但是这样的劣势在于数据处理较复杂,而且每一步分析都会消耗内存和时间。...使用vaex读取并计算: 文件读取用了9ms,可以忽略不计,平均值计算用了1s,总共1s。 同样是读取1亿行的hdfs数据集,为什么pandas需要十几秒,而vaex耗费时间接近于0呢?...这种对应关系纯属是逻辑上的概念,物理上是不存在的,原因是进程的逻辑地址空间本身就是不存在的。...vaex还在快速发展中,集成了越来越多pandas的功能,它在github上的star数是5k,成长潜力巨大。
Python中的pandas是大家常用的数据处理工具,能应付较大数据集(千万行级别),但当数据量达到十亿百亿行级别,pandas处理起来就有点力不从心了,可以说非常的慢。...文件读取用了9ms,可以忽略不计,平均值计算用了1s,总共1s。 同样是读取1亿行的hdfs数据集,为什么pandas需要十几秒,而vaex耗费时间接近于0呢?...这种对应关系纯属是逻辑上的概念,物理上是不存在的,原因是进程的逻辑地址空间本身就是不存在的。...结论 vaex有点类似spark和pandas的结合体,数据量越大越能体现它的优势。只要你的硬盘能装下多大数据,它就能快速分析这些数据。...vaex还在快速发展中,集成了越来越多pandas的功能,它在github上的star数是5k,成长潜力巨大。
文章目录 简介 nodeAffinity 节点亲和性 podAffinity 亲和性调度实例 互斥性调度实例 简介 前面的 nodeSelector 调度略显生硬,如果场景是:某个 Pod 最好调度到磁盘大的节点上...,如果暂时没有,小点也行,比方说数据库; 如果场景是:某个 Pod,坚决不能调度到某类节点上,其余无所谓,比如说负载均衡不能调度到不对外开放端口的节点上; 诸如此类… 关于这些,nodeSelector...- ssd containers: - name: with-node-affinity image: mysql operator 的可选操作: In: label的值在某个列表中...NotIn:label的值不在某个列表中 Exists:某个label存在 DoesNotExist:某个label不存在 Gt:label的值大于某个值(字符串比较) Lt:label的值小于某个值...(字符串比较) equal:label存在且值等于指定的值 注意事项: 如果同时定义了nodeSelector和nodeAffinity,name必须两个条件都得到满足,pod才能最终运行在指定的node
本身是以行列表作为核心概念,比如说 Excel 中的透视表,在 pandas 中就有一一对应,本系列已经讲解过。...Excel 的操作便利性在于只需要鼠标点击就可以完成操作,这对于查看数据是非常方便。 难道我们用 Python 就不能做到吗?本文将结合一些工具,使得你的 pandas 处理过程变得灵活动态。...---- 透视表的灵活性 当我们拿到一份数据时,经常需要不断改变条件对数据进行观测,如下一份某水果的销售情况: 一行数据表示,某天(date)在某地区(region)此水果的某个品种(type)的价格...处理 本文需要导入的库是这些: 首先使用 pandas 得到透视表的结果,这非常简单: 行3,4:为了突出可以变化的东西,这里定义2个变量 通过修改2个变量,我们能得到对应的结果数据 但是这远远不够...2015,2016,2017,2018] ,年份有4种选择,此时界面上看到一个 year 的下拉框供用户点选 topn=range(1,11) ,topn 有10种选择,界面同样可以看到下拉框 现在,我们只需要简单从下拉框选择条件值
Series: Series是一种一维的数据结构,类似于Python中的基本数据结构list,但区别在于Series只允许存储相同的数据类型。...如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...例如,可以根据特定条件筛选出满足某些条件的数据段,并对这些数据段应用自定义函数进行处理。...缺失值处理(Missing Value Handling) : 处理缺失值是时间序列数据分析的重要步骤之一。Pandas提供了多种方法来检测和填补缺失值,如线性插值、前向填充和后向填充等。...Pandas的groupby方法可以高效地完成这一任务。 在Pandas中,如何使用聚合函数进行复杂数据分析? 在Pandas中,使用聚合函数进行复杂数据分析是一种常见且有效的方法。
而DataFrame是一种表格型数据结构,它含有一组有序的列,每列可以是不同的值。DataFrame既有行索引,也有列索引,它可以看作是由Series组成的字典,不过这些Series公用一个索引。...一是通过iloc 索引访问,只能接受整数索引,也不能添加逻辑判断的过滤条件,但它不受标签值的影响可以一直通过整数索引访问,在对series排序后如果想获取首个元素,就可以通过iloc 来访问,因为此时标签的顺序已经改变...df.at['a', 'c'] # 按标签信息,传入行列标签索引信息 获取具体某个数据 df.iat[1, 2] # 按位置信息,传入行列位置信息,获取具体某个数据 # 新版本中pandas中 df...pandas 常用函数 pandas中的函数 一般会有两种结果,一是copy,即返回一个修改后的副本,原有的不变,二是inplace,即在原有基础上直接进行修改。...series 中的统计函数 1. sum() 方法 和 mean() 方法 sum 求和函数。mean 求均值,同时有skipnan参数可选是否忽略nan 空值。
所以这一次简单讲一下Pandas的用法,以便以后能更好的使用。 数据整合是对数据进行行列选择、创建、删除等操作。 数据清洗则是将整合好的数据去除其中的错误和异常。...当然Pandas还提供了更方便的条件查询方法,比如query、between、isin、str.contains(匹配开头)。 使用query进行条件查询。...07 赋值与条件赋值 # 将某个值替换 print(df.praise.replace(33, np.nan)) 条件赋值。这里以性别列为例,将0,1,2替换为未知、男性、女性。...02 缺失值处理 Pandas提供了fillna方法用于替换缺失值数据。...其中Pandas的qcut函数提供了分箱的实现方法,默认是实现等宽分箱。
因此很多时候为了提升整个数据分析工作流的执行效率以及代码的简洁性,需要配合一些pandas中的高级特性。...图1 2 基于query()的高效查询 query()顾名思义,是pandas中专门执行数据查询的API,其实早在2014年,pandas0.13版本中这个特性就已经出现了,随着后续众多版本的迭代更新...,目前pandas中的query()已经进化得非常好用(笔者目前使用的pandas版本为1.1.0)。 ...而pandas中的eval()有两种,一种是top-level级别的eval()函数,而另一种是针对数据框的DataFrame.eval(),我们接下来要介绍的是后者,其与query()有很多相同之处,...策略之后无法被解析的日期会填充pd.NAT,而缺失值之间是无法进行相等比较的: # 利用assign进行新增字段计算并保存为新数据框 result1 = netflix.assign(years_to_now
领取专属 10元无门槛券
手把手带您无忧上云