ChatGPT 的爆火让大家看到人工智能(AI)的宏大前景,那么对于程序员来说,ChatGPT 如何能作为程序员们最忠实的伙伴,被充分运用于编程中呢?
Copilot是GitHub 和 OpenAI 合作开发的一款人工智能代码助手,它可以根据用户输入的注释和代码片段,自动生成高质量的代码。Copilot使用了OpenAI的GPT模型,可以学习和理解大量的代码库和文档,从而生成符合用户需求的代码。Copilot可以与多种编程语言和开发环境集成,包括Python、JavaScript、TypeScript、Go、PHP 等。
【译者注】本文通过一个简单的Go绑定实例,让读者一步一步地学习到Tensorflow有关ID、作用域、类型等方面的知识。以下是译文。 Tensorflow并不是机器学习方面专用的库,而是一个使用图来表示计算的通用计算库。它的核心是用C++实现的,并且还有不同语言的绑定。Go语言绑定是一个非常有用的工具,它与Python绑定不同,用户不仅可以通过Go语言使用Tensorflow,还可以了解Tensorflow的底层实现。 绑定 Tensorflow的开发者正式发布了: C++源代码:真正的Tensorflow
CodeFuse 是一款为国内开发者提供智能研发服务的产品,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型,旨在辅助开发者提高编码效率和代码质量。它提供了多项功能,包括辅助编码、代码优化和生成单测。通过海量数据提供实时的代码补全服务,包括行内补全和片段补全,并支持解释代码、生成注释等功能,帮助开发者快速完成功能研发,提高研发效率。此外,CodeFuse 还能对选定的代码段进行分析理解,提出优化和改进建议,并能直接基于改进建议形成代码补丁,帮助开发者写出更好的代码。另外,在写完业务逻辑后,只需选中代码选择生成单测,即可智能生成具备业务语义的测试用例,从而提升问题发现的效率,方便快捷。
编者按:代码智能(code intelligence)目的是让计算机具备理解和生成代码的能力,并利用编程语言知识和上下文进行推理,支持代码检索、补全、翻译、纠错、问答等场景。以深度学习为代表的人工智能算法,近年来在理解自然语言上取得了飞跃式的突破,代码智能也因此获得了越来越多的关注。该领域一旦有突破,将大幅度推动 AI 在软件开发场景的落地。
GPT-3 是一个训练集45TB、参数规模1750亿、预训练结果700G的AI模型,其一经问世就成为了万众瞩目的焦点。在其出现之后,使用GPT-3作诗、作曲甚至作画的应用纷至沓来。
选自arXiv 机器之心编译 参与:路雪、刘晓坤 大部分研究论文缺乏相应的开源实现,在不同的库中复现研究论文的实现也是一大难题。因此,这篇论文的作者提出一种新型算法,可以自动解析论文,提取文中描述的深度学习模型设计,并生成 Keras 和 Caffe 可执行源代码,在模拟数据集上的实验表明该框架对流程图内容提取的准确率达到了 93%。 过去十年,深度学习在人工智能领域飞速发展,自 2016 年以来就发布了 35800 篇研究论文。与论文一样不断增长的还有研究者和从业者真实的努力和奋斗。在近期的一次 AI 会
如果你比较关注人工智能,可能会注意到最近圈子的人都在刷屏一个 AI 玩意,叫 ChatGPT 。我一直关注的和菜头在他的公众号槽边往事上就接连写了几篇文章。
作者 | 马超 责编 | 孙胜 出品 | CSDN(ID:CSDNnews) 最近OpenAI与GitHub联合构建的AI自动编程工具Copilot正式登场!Copilot基于自然语言处理模型GPT-3搭建而成,可在程序员编写代码时提供建议,甚至直接补齐代码。 目前Copilot预览版已经正式上线Visual Studio Code平台。虽然Copilot AI码自动生成器仍在逐渐完善当中,但它的出现却提供了一个关于大型自然语言处理模型的发展思路,也让我们程序员群体和对于自身未来是否会被AI
【导读】近日IBM研究院提出从深度学习相关论文中自动生成深度学习代码,使用这项研究,在研究论文中提出的DL设计可以被自动提取,然后使用一种新颖的深度学习UI编辑器DARVIZ,可以手动修改和完善提取的设计。对于提取的DL设计,其源代码可以在 Keras(Python)和 Caffe(prototxt)中实时生成。所提出的DLpaper2Code框架从研究论文中提取图形和表格信息并将其转换为源代码,未来可能对DL研究的重现性产生重大影响。 论文:DLPaper2Code: Auto-generation of
最近看到在“Baidu Create 2019”的百度AI交互设计论坛上,设计师分享了他们的最新成果:百度人工智能交互设计院与百度研究院商业智能实验室合作,基于百度自主研发、开源开放的深度学习框架飞桨(PaddlePaddle),让系统在每个模块组合形成的不同界面中找到最优解,在模型框架内给出任何一种设计,机器都能快速预测用户的偏好结果,设计师将以此为基础给出符合用户喜好与使用习惯的最佳解决方案。
写代码是软件工程师们每天的工作,但当你辛辛苦苦写了一大堆代码,却发现无法运行的时候,内心一定是崩溃的。
CCF-腾讯犀牛鸟基金于2013年由腾讯公司和中国计算机学会(CCF)共同发起,今年是基金发起的第10年。10年来,犀牛鸟基金致力于为海内外青年学者搭建产学合作创新的平台,推动科技在产业创新和社会发展中持续发挥价值。 本年度犀牛鸟基金设立12个技术领域共35项研究命题,我们将分7期对各项命题进行详细介绍,本文重点聚焦多模态融合&软件工程领域,欢迎海内外优秀青年学者关注并申报。 8.多模态融合 8.1 多媒体数字水印与视频内容篡改识别 随着多媒体技术和网络通信的发展,数字媒体的安全隐患日益严重,一方面平台需要
软件供应链安全指的是确保软件供应链中的各个环节和组件不受恶意攻击或未经授权的篡改,以保证软件交付的完整性、可信性和可靠性。软件供应链是指涉及开发、测试、集成、部署等多个环节的软件开发和交付过程,其中包括了供应商、开发者、第三方库、依赖组件、工具和用户等各种参与者。
让 AI 自动生成代码,是很多开发者的梦想,近些年来,有关这一方面的研究屡见不鲜。但要想训练一个好用的 AI,最重要的工作或许就是找到优质数据。
开发者写代码,和数学家写公式一样是非常自然的一件事。开发者将完成某个任务的步骤和逻辑,一行行写成代码,并期待达到预定的效果。数学家从某个事实出发,将思考过程一行行写成表达式,并期待找到复杂逻辑背后的简单关系。
是由 OpenAI 开发的一种基于 GPT(Generative Pre-trained Transformer)技术的聊天型人工智能模型。
选自微软研究博客 作者:Weiyang Liu等 机器之心编译 参与:路、刘晓坤 程序分析通常有两种方法,分别基于数理逻辑和自然语言理解。通过将程序表示成图结构,来自微软研究院和西门菲莎大学的研究者展示了一种结合二者的新方法,可以直接从源代码中学习,且更准确地查找已发布软件中的 bug。 过去五年,基于深度学习的方法给大量应用带来了变革,如需要理解图像、话语和自然语言的应用。对于计算机科学家而言,一个自然出现的问题是:计算机是否能够学会理解源代码。乍一看这个问题似乎很简单,因为编程语言的设计初衷就是被计算机
要访问Baidu Comate的官网并开始使用,需要先登录百度账号,然后点击免费使用按钮。
这篇文章介绍了Auto-Scheduler的一种方法Ansor,这种方法已经被继承到TVM中和AutoTVM一起来自动生成高性能的张量化程序。
腾讯公司和中国计算机学会于2013年共同发起的CCF-腾讯犀牛鸟基金(以下简称犀牛鸟基金),始终致力于支持海内外青年学者开展前沿学术研究与技术实践。犀牛鸟基金通过提供企业真实问题与业务实际需求,搭建产学研合作及学术交流的平台,推动合作双方学术影响力的提升及研究成果的应用落地,促进自主技术的创新与发展。 本年度犀牛鸟基金共设立10个科研方向共33项研究课题 申报截止时间为2021年6月15日24:00(北京时间) 申报链接: https://www.withzz.com/project/detail/12
今天为大家介绍的是来自Viji M. Draviam团队的一篇论文。人工智能(AI)的发展促进了计算机视觉和深度学习(DL)技术在显微镜图像和影片评估中的应用增加。这种应用不仅解决了动态细胞生物过程的定量分析难题,还开始支持药物开发、精准医疗和基因组-表型组映射方面的进展。作者调查了现有的基于AI的技术和工具,以及开源数据集,特别关注于细胞和亚细胞结构及动态的分割、分类和跟踪的计算任务。作者从计算视角总结了显微镜视频分析中长期存在的挑战,并回顾了深度学习引导自动化在细胞动态研究中的新兴研究前沿和创新应用。
自去年底以来,ChatGPT 的技术突破引爆了 AI 军备竞赛,国内外科技公司和机构接连发布了上百个大语言模型。
作者: Adrian Rosebrock 机器之心编译 目标检测技术作为计算机视觉的重要方向,被广泛应用于自动驾驶汽车、智能摄像头、人脸识别及大量有价值的应用上。这些系统除了可以对图像中的每个目标进行识别、分类以外,它们还可以通过在该目标周围绘制适当大小的边界框来对其进行定位。本文作者从图像识别与目标检测的区别开始,进一步简单介绍了目标检测的基本模块与实现方法。本文是目标检测的一般指南,它并没有详细介绍主流的目标检测算法,这些算法读者可参考从 RCNN 到 SSD,这应该是最全的一份目标检测算法盘点
王小新 编译自 Keras Blog 量子位 出品 | 公众号 QbitAI Francois Chollet是深度学习框架Keras库的作者和谷歌人工智能研究员。近期,他在博客上连发两文,分别讨论了深度学习的理论局限和未来发展方向。 量子位昨天推送了第一篇《 Keras作者、谷歌研究员Chollet:深度学习的理论局限 》。 本文为第二篇,Chollet结合他的深度学习书Deep Learning with Python第9章第3节,在下文细致地讨论了深度学习的未来发展方向。 《深度学习的理论局限》一文加
当大家都在热议大模型和生成式AI时,怎么让这些炫酷的技术快速落地,真正帮到商业和社会,成了个大难题。不过,AWS已经把大模型和生成式AI的门槛大大降低了。
最近,我发布了github上的第一个开源代码库:godoc-repair,地址为:https://github.com/xiaoyuanhao/godoc-repair。这是一个用于修复Golang代码注释的工具,个人觉得特别实用,可以为修复代码注释节省大量的时间成本。
AI 科技评论按:伴随着 AI 技术的发展和应用,人们对「人工智能」的认知也不断被刷新和拓展,在大众眼中,AI 正变得越来越强大,不仅可以下棋博弈战胜人类的顶尖选手,还可以进行语音识别、自动翻译、人脸识别,甚至可以自动驾驶汽车。最近,北京大学与硅心科技团队联合推出了一项新的 AI 成果——aiXcoder,它利用 AI 技术辅助开发者自动进行程序编写,引燃了人们关于「AI+软件」的巨大发展潜力以及「软件开发自动化」发展前景的讨论与思考。
代码自动补全、自然语言生成代码、自动添加注释、智能bug查找、解释代码、自动生成单元测试等等。
CCF-腾讯犀牛鸟基金由腾讯与中国计算机学会联合发起,旨在为全球范围内最具创新力的青年学者搭建产学研合作及学术交流的平台,提供了解产业真实问题,接触业务实际需求的机会,并通过连接青年学者与企业研发团队的产学科研合作,推动双方学术影响力的提升及应用成果的落地,为科技自主研发的探索和创新储备能量。 本年度共设立9个重点技术方向,29项研究命题 申报截止时间:2019年6月15日24:00 我们将分四期对研究命题进行详细介绍 本文将介绍智慧教育和机器学习 欢迎海内外青年学者关注并申报。 一、智慧教育 智慧教
tensorflow是google在2015年开源的深度学习框架,可以很方便的检验算法效果。这两天看了看官方的tutorial,极客学院的文档, http://wiki.jikexueyuan.com/project/tensorflow-zh/get_started/introduction.html 以及综合tensorflow的源码,把自己的心得整理了一下,作为自己的备忘录。 系列 1: http://blog.csdn.net/u014595019/article/details/52677412
大模型由于其卓越的自然语言理解、推理等能力,已经被应用于各种场景,取得了前所未有的效果。
8 月 17 日,国产智能化软件开发系统服务商硅心科技宣布,聚焦国内多家大型企业研发需求,正式推出全新 aiXcoder Europa。意味着基于代码大模型、结合行业需求、为企业提供编码生产力的智能化软件开发新范式已触手可及。
李林 岳排槐 发自 凹非寺 量子位 出品 | 公众号 QbitAI 深度学习的论文越来越多了~ 多到什么程度?Google scholar的数据显示,2016年以来,人工智能领域新增的论文已经超过3.5万篇。arXiv上,AI相关的论文每天都不下百篇。 刚刚结束不久的计算机视觉会议ICCV上,发表了621篇论文;2018年的ICLR,有1004篇论文正在匿名开放评审;NIPS 2017共收到3240篇论文投稿。 研究成果极大丰富了,但离应用到产品中,还差一大步:把论文转化成代码。毕竟,作者顺便提供源码的是少
腾讯公司和中国计算机学会于2013年共同发起的CCF-腾讯犀牛鸟基金(以下简称犀牛鸟基金),始终致力于支持海内外青年学者开展前沿学术研究与技术实践。犀牛鸟基金通过提供企业真实问题与业务实际需求,搭建产学研合作及学术交流的平台,推动合作双方学术影响力的提升及研究成果的应用落地,促进自主技术的创新与发展。 本年度犀牛鸟基金共设立8个技术方向,35项研究命题 申报截止时间为2020年6月15日24:00(北京时间) 申报链接:https://withzz.com/project/detail/73(请在
Mybridge AI博客从将近250个机器学习开源项目中找到了标星数排名最靠前的Top 10项目,涵盖视觉问答、对象检测、自动生成评论等多个维度。
在这一套自动化测试架构中,代码注释起到了核心的作用,背后就是标准化的要求,代码注释的格式如下:
作者 | Jeremy Howard 译者 | 王强 策划 | 蔡芳芳 1背景 GitHub Copilot 是 GitHub 和 OpenAI 发布的一项新服务,介绍说是“你的 AI 结对程序员”。它是 Visual Studio Code 的一个插件,可根据当前文件的内容和当前光标位置为你自动生成代码。 它用起来感觉真的很神奇。比如说,这里我输入了一个函数的名称和文档字符串,该函数应该“Write text to file fname”: 上图里函数的灰色主体完全是 Copilot 为我编写的!我按
编者按:12月18日,腾讯大数据峰会暨KDD China技术峰会在深圳举行,华为诺亚方舟实验室主任李航博士在会上做了题为《自然语言处理中的深度学习:过去、现在和未来》的演讲,AI科技评论根据现场演讲整
来源:清华大学软件学院 本文约1000字,建议阅读5分钟 清华大学软件学院2011届校友李宇佳作题为“AlphaCode:编程竞赛级的程序自动生成”的学术报告。 清华软件论坛 2022年4月以来,清华大学软件学院为迎接清华大学建校111周年、软件学院建院21周年,旨在持续增强学术交流氛围,鼓励促进学科交叉研究,扩大学术研究成果影响传播,软件学院开启了“清华软件论坛”系列学术活动,形式包括但不限于大型学术论坛、小型学术研讨会、与产业技术交流会等。 文末附直播回放仅供参考学习。 论坛纪实 1月5日,清华软件论坛
作者:石文华 编辑:祝鑫泉 前 言 文章来源:https://hackernoon.com/latest-deep-learning-ocr-with-ker
【GiantPandaCV导语】现在深度学习项目代码量越来越大,并且单个文件的量也非常的大。笔者总结了一些专家的经验并结合自己看的一些项目,打算总结一下如何探索和深入一个深度学习项目库。
2017年7月18日星期二 由弗朗索瓦Chollet 在论文中。
今天为大家介绍的是来自Mamoon Rashid的一篇关于深度学习在基因测序方面应用的综述论文。基因组学正朝着数据驱动的科学方向发展。随着高通量数据生成技术在人类基因组学中的出现,我们被大量的基因组数据所淹没。为了从这些基因组数据中提取知识和模式,人工智能尤其是深度学习方法起到了重要作用。在当前的综述中,作者讨论了深度学习方法/模型在人类基因组学不同子领域中的发展和应用。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 项目描述 本项目是一个带有超级详细中文注释的基于GPT2模型的新闻标题生成项目。 本项目参考了GPT2-Chinese、GPT2-chitchat、CDial-GPT、GPT2等多个GPT2开源项目,并根据自己的理解,将代码进行重构,添加详细注释,希望可以帮助到有需要的人。 本项目使用HuggingFace的transformers实现GPT2模型代码编写、训练及测试。 本项目通过Flask框架搭建了一个Web服务,将新
2021年,低代码和无代码的概念都被炒得热火朝天,各路产品就像下饺子一样蜂拥而至。
TensorFlow、Keras和PyTorch是目前深度学习的主要框架,也是入门深度学习必须掌握的三大框架,但是官方文档相对内容较多,初学者往往无从下手。本人从github里搜到三个非常不错的学习资源,并对资源目录进行翻译,强烈建议初学者下载学习,这些资源包含了大量的代码示例(含数据集),个人认为,只要把以上资源运行一次,不懂的地方查官方文档,很快就能理解和运用这三大框架。
领取专属 10元无门槛券
手把手带您无忧上云