首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spring Cloud Alibaba 系列之 Sentinel 熔断降级

    一个服务常常会调用别的模块,可能是另外的一个远程服务、数据库,或者第三方 API 等。例如,支付的时候,可能需要远程调用银联提供的 API;查询某个商品的价格,可能需要进行数据库查询。然而,这个被依赖服务的稳定性是不能保证的。如果依赖的服务出现了不稳定的情况,请求的响应时间变长,那么调用服务的方法的响应时间也会变长,线程会产生堆积,最终可能耗尽业务自身的线程池,服务本身也变得不可用。   现代微服务架构都是分布式的,由非常多的服务组成。不同服务之间相互调用,组成复杂的调用链路。以上的问题在链路调用中会产生放大的效果。复杂链路上的某一环不稳定,就可能会层层级联,最终导致整个链路都不可用。因此我们需要对不稳定的弱依赖服务调用进行熔断降级,暂时切断不稳定调用,避免局部不稳定因素导致整体的雪崩。熔断降级作为保护自身的手段,通常在客户端(调用端)进行配置。当资源被降级后,在接下来的降级时间窗口之内,对该资源的调用都自动熔断(默认行为是抛出 DegradeException)。注意:Sentinel 1.8.0 对熔断降级特性进行了全新的改进升级。

    01

    干货 | 携程实时用户行为系统实践

    作者简介 陈清渠,毕业于武汉大学,多年软件及互联网行业开发经验。14年加入携程,先后负责了订单查询服务重构,实时用户行为服务搭建等项目的架构和研发工作,目前负责携程技术中心基础业务研发部订单中心团队。 携程实时用户行为服务作为基础服务,目前普遍应用在多个场景中,比如猜你喜欢(携程的推荐系统),动态广告,用户画像,浏览历史等等。 以猜你喜欢为例,猜你喜欢为应用内用户提供潜在选项,提高成交效率。旅行是一项综合性的需求,用户往往需要不止一个产品。作为一站式的旅游服务平台,跨业务线的推荐,特别是实时推荐,能实际满足

    06

    日处理20亿数据,实时用户行为服务系统架构实践

    携程实时用户行为服务作为基础服务,目前普遍应用在多个场景中,比如猜你喜欢(携程的推荐系统)、动态广告、用户画像、浏览历史等等。 以猜你喜欢为例,猜你喜欢为应用内用户提供潜在选项,提高成交效率。旅行是一项综合性的需求,用户往往需要不止一个产品。作为一站式的旅游服务平台,跨业务线的推荐,特别是实时推荐,能实际满足用户的需求,因此在上游提供打通各业务线之间的用户行为数据有很大的必要性。 携程原有的实时用户行为系统存在一些问题,包括:1)数据覆盖不全;2)数据输出没有统一格式,对众多使用方提高了接入成本;3)日志处

    010

    日处理20亿数据,实时用户行为服务系统架构实践

    携程实时用户行为服务作为基础服务,目前普遍应用在多个场景中,比如猜你喜欢(携程的推荐系统)、动态广告、用户画像、浏览历史等等。 以猜你喜欢为例,猜你喜欢为应用内用户提供潜在选项,提高成交效率。旅行是一项综合性的需求,用户往往需要不止一个产品。作为一站式的旅游服务平台,跨业务线的推荐,特别是实时推荐,能实际满足用户的需求,因此在上游提供打通各业务线之间的用户行为数据有很大的必要性。 携程原有的实时用户行为系统存在一些问题,包括:1)数据覆盖不全;2)数据输出没有统一格式,对众多使用方提高了接入成本;3)日志处理模块是web service,比较难支持多种数据处理策略和实现方便扩容应对流量洪峰的需求等。 而近几年旅游市场高速增长,数据量越来越大,并且会持续快速增长。有越来越多的使用需求,对系统的实时性,稳定性也提出了更高的要求。总的来说,当前需求对系统的实时性/可用性/性能/扩展性方面都有很高的要求。 一、架构 这样的背景下,我们按照如下结构重新设计了系统:

    02

    如何快速应对线上故障

    发生故障后,不要只顾闷头排查问题,还要及时向你的直属领导汇报故障现象、影响范围、修复措施和修复进度,如果可以,最好再汇报一个大概的恢复时间。这不是浪费时间,而是让你的领导快速了解故障情况,评估风险,以便于协调内外部资源,同时争取更多的决策时间应对老板或业务部门的催促。如果是等级较高的故障就需要联系该系统相关人员一起排查,同时与该业务线的前后端开发、测试、运维及 DBA,多线程并行作战。在清楚故障现象后,各自排查自己负责的模块,最大限度地动用可利用的资源。严重的线上故障一定是要协调各方资源一起排查,因为只有掌握了足够多的信息,才能做出解决问题的正确决策。有必要的情况下,对故障升级要求更多的人投入进来解决该问题

    02

    基于高斯分布和OneClassSVM的异常点检测

    大多数数据挖掘或数据工作中,异常点都会在数据的预处理过程中被认为是“噪音”而剔除,以避免其对总体数据评估和分析挖掘的影响。但某些情况下,如果数据工作的目标就是围绕异常点,那么这些异常点会成为数据工作的焦点。 数据集中的异常数据通常被成为异常点、离群点或孤立点等,典型特征是这些数据的特征或规则与大多数数据不一致,呈现出“异常”的特点,而检测这些数据的方法被称为异常检测。 “噪音”的出现有多种原因,例如业务操作的影响(典型案例如网站广告费用增加10倍,导致流量激增)、数据采集问题(典型案例如数据缺失、不全、溢出、格式匹配等问题)、数据同步问题(异构数据库同步过程中的丢失、连接错误等导致的数据异常),而对离群点进行挖掘分析之前,需要从中区分出真正的“离群数据”,而非“垃圾数据”。

    02
    领券