开源文本到语音库是一种将文本转换为语音的技术,它可以将文本转换为自然语音,并且可以通过开源的方式进行使用和分发。
开源文本到语音库的优势在于它可以帮助开发者更好地控制语音合成的过程,并且可以根据需要进行定制化的开发。它可以应用于各种场景,例如语音助手、智能音响、语音控制系统等等。
推荐的腾讯云相关产品和产品介绍链接地址:
这些产品都可以帮助开发者更好地实现文本到语音的转换,并且可以提供更好的语音识别和合成效果。
大家好!我是开源君,一个热衷于软件开发和运维的工程师。本频道我专注于分享Github和Gitee上的高质量开源项目,并致力于推动前沿技术的分享。
随着开源程序的发展,越来越多的程序员开始关注并加入开源大模型的行列。每个人对开源行业和项目的关注点各不相同,现在快来加入我们的开源热门项目推荐活动,分享你感兴趣的热门项目吧!
今天我要给大家介绍一款名叫 Edge-TTS 的工具。Edge-TTS,全称为 Edge Text-to-Speech。文本转语音技术,它的发展历史可以追溯到 20 世纪 60 年代,当时科学家们开始研究如何将文本信息转化为语音。然而,由于当时的技术限制,早期的文本转语音系统的声音质量并不高,听起来往往机械化且不自然。
作者 | 李梅 编辑 | 陈彩娴 机器翻译是现今人类消除语言障碍、重建巴别塔的新工具。然而,在世界现存的 7000 多种已知语言中,许多低资源语言还未得到足够的关注,尤其是有近一半的语言没有标准的书面系统,这是构建机器翻译工具的一大障碍,所以目前 AI 翻译主要集中在书面语言上。 在利用 AI 推动自然语言翻译这件事上,Meta 一直致力于“No Language Left Behind”(没有一种语言被落下)的目标。 比如汉语方言之一闽南话,现在也有了专属的机器翻译系统,讲闽南话的人可以与讲英语的人进行无
---- 新智元报道 编辑:LRS 【新智元导读】AI语音生成的特点就是呆板,没有情绪的起伏。最近Meta AI连发了三篇Textless NLP的论文,不仅开源了textlesslib库,还展示了AI对话在语音情感转换的惊人能力! 在日常交流的时候,人们往往会使用一些「非语言」的信号,比如语调、情感表达、停顿、口音、节奏等来强化对话互动的效果。 像开心、愤怒、失落、困倦时说同一句话,虽然内容都一样,但听起来的感觉肯定是非常不同的,而AI的发声则比较死板。 目前AI语音生成系统大部分还是根据书面
chatgpt-on-wechat 是一款基于大模型搭建的聊天机器人,同时支持多平台、多模型,能处理文本、语音和图片,访问操作系统和互联网,支持基于自有知识库进行定制企业智能客服。
ASRT 是一套基于深度学习实现的语音识别系统,全称为 Auto Speech Recognition Tool,由 AI 柠檬博主开发并在 GitHub 上开源(GPL 3.0 协议)。本项目声学模型通过采用卷积神经网络(CNN)和连接性时序分类(CTC)方法,使用大量中文语音数据集进行训练,将声音转录为中文拼音,并通过语言模型,将拼音序列转换为中文文本。基于该模型,作者在 Windows 平台上实现了一个基于 ASRT 的语音识别应用软件它同样也在 GitHub 上开源了。
不知道大家在日常的学习、工作中是否有这样的一个情况,当我们阅读完一篇文章,很快就能读完,但印象不会很深;或者说在很多时候,对着电脑、手机看久了,眼睛很疲劳,希望能够通过听觉来接收我们文章的内容。我自己在时常阅读公众号文章,就很喜欢去听,而不是阅读的方式。逐渐发现听内容比阅读内容更容易吸收,而且能够极大的缓解我们的眼睛疲劳。
原文链接:https://github.com/fighting41love/funNLP
智能语音技术已经在生活中随处可见,常见的智能应用助手、语音播报、近年来火热的虚拟数字人,这些都有着智能语音技术的身影。智能语音是由语音识别,语音合成,自然语言处理等诸多技术组成的综合型技术,对开发者要求高,一直是企业应用的难点。
大家好,我是崔庆才。 想必大家在开发项目过程中可能或多或少用到语音识别、语音合成等相关技术,但又不知道哪家的服务好,而且有的收费还贼贵。尤其流式识别更是个难题。 今天我给大家推荐一个流式语音合成库,现在在 GitHub 上已经开源,而且已经斩获 3.1k star,效果很不错,同时这也是业界首个流式语音合成系统,推荐给大家试试。 具体详情大家可以了解下文哈,最后还有直播课,大家感兴趣欢迎扫码了解。 智能语音技术已经在生活中随处可见,常见的智能应用助手、语音播报、近年来火热的虚拟数字人,这些都有着智能语音技术
终于有时间更新语音识别系列了,之前的几篇: 语音识别系列︱用python进行音频解析(一) 语音识别系列︱paddlehub的开源语音识别模型测试(二) 语音识别系列︱paddlespeech的开源语音识别模型测试(三)
Meta此次发布的是一个翻译模型系列:Seamless Communication(无缝交流)。
7 月 19 日,Meta 终于发布了免费可商用版本 Llama 2,让开源大模型领域的格局发生了巨大变化。
GPT-SoVITS 是一个强大的少样本语音转换和文本到语音 WebUI。 该项目主要功能、关键特性、核心优势包括:
多模态:文本、音频、视频、图像等多形态的展现形式。 目前部门内业务要求领域大模型需要是多模态——支持音频/文本。从个人思考的角度来审视下,审视下多模态大模型的实现方式。 首先就要区分输入与输出,即输入的模态与输出的模态。从目前来看,模型的输出大多都是文本,模型的输入一般是图片/文本;但少数的大模型比如QWen、讯飞星火等支持语音的输入。
智能语音技术已经在生活中随处可见,常见的智能应用助手、语音播报、近年来火热的虚拟数字人,这些都有着智能语音技术的身影。智能语音是由语音识别,语音合成,自然语言处理等诸多技术组成的综合型技术,对开发者要求高,一直是企业应用的难点。 飞桨语音模型库 PaddleSpeech ,为开发者提供了语音识别、语音合成、声纹识别、声音分类等多种语音处理能力,代码全部开源,各类服务一键部署,并附带保姆级教学文档,让开发者轻松搞定产业级应用! PaddleSpeech 自开源以来,就受到了开发者们的广泛关注,关注度持续上涨。
8月份,NVIDIA开源了一个深度学习推断库——Jetson Voice ,专为Jetson Nano、TX1/TX2、Xavier NX和AGX Xavier等嵌入式设备而设计,为AI技术带来了更多可能性。现在,让我们深入了解这个Jetson Voice 吧。
该项目的主要功能是提供预训练和微调后的 LLaMA 语言模型的权重和起始代码。这些模型参数范围从 7B 到 70B 不等。
我会把自己浏览和使用过的AI相关新闻、产品、工具、模型等,整理在这里,帮助大家去除信息噪音,简化阅读,更高效的了解AI前沿发展。主要围绕:
语音识别技术,也被称为自动语音识别,目标是以电脑自动将人类的语音内容转换为相应的文字和文字转换为语音。
新的一周,又有什么新的 AI 应用呢?在 AI 专场,这次是文本生语音和双语对话模型,前者能解决你的语音问题,后者则是清华开源的模型,能让你搞个自己的类 ChatGPT 对话助手。此外,还有升级版的 MiniGPT-4 搞定基于图片的文字工作,像是诗歌生成、图片描述等等。
向量数据库是一种专为高效存储和检索高维向量数据而设计的数据库系统。这些向量通常来源于机器学习和深度学习模型对非结构化数据(如文本、图像、音频、视频)的编码处理。通过将原始数据转化为密集的数值向量,向量数据库能够支持诸如相似性搜索、推荐系统、图像检索、语音识别等多种应用场景。
基于文本的翻译系统已经取得了非常大的进步,从最早的查词匹配、语法规则,再到神经翻译系统、Transformer预训练等,翻译结果越来越精准,支持的互译语言数量也超过了200种。
【新智元导读】谷歌今天宣布开源大规模语言建模模型库,这项名为“探索RNN极限”的研究今年 2 月发表时就引发激论,如今姗姗来迟的开源更加引人瞩目。研究测试取得了极好的成绩,另外开源的数据库含有大约 1
11 月 5 日,在 Wave Summit+2019 深度学习开发者峰会上,飞桨全新发布和重要升级了最新的 21 项进展,在深度学习开发者社区引起了巨大的反响。
3 月 1 日,由 Mozilla 基金会发起的 Common Voice 项目,发布新版语音识别数据集,包括来自 42000 名贡献者,超过 1400 小时的语音样本数据,涵盖包括英语、法语、德语、荷兰语、汉语在内的 18 种语言。
现在已经有很多非常不错的语音转文本的AI应用了,比如通义听悟、飞书妙记等。不过,对于大批量、多个文件夹的语音转文本,手工操作就比较麻烦了,还是有个程序自动化运行更方面。
https://blog.mozilla.org/blog/2019/02/28/sharing-our-common-voices-mozilla-releases-the-largest-to-date-public-domain-transcribed-voice-dataset/
【新智元导读】巨头都在争相开源,那么彼此之间会不会形成竞争?近日,火狐浏览器的所有者 Mozilla 开源了一个语音数据库,与谷歌所做的数据库高度类似。这篇文章比较了两家公司数据库的构成要素和数据搜集方法。文章认为,那些免费的音频资源更实用,甚至比那些大公司秘而不宣的数据集更有价值。 一个语音虚拟助理,比如Siri、Alexa、Cortana或者Google Home的表现,很大程度上是由驱动其的数据决定的。要训练这些程序来理解你正在说什么,首先要拥有大量关于人类对话的现实案例数据。 这让现有的语音识别公司
LangChain是一个开源AI工具包,于去年10月推出,用于组合模型。他们使使用工具、调用API以及利用强大的预先训练的生成模型变得更加容易。他们正在筹集资金,以更好地实现其安全、检索和整合到更广泛的 ML 生态系统的目标。
到目前为止,虽然机器翻译无法完全做到「信、达、雅」,但翻译结果的准确性对于一般应用场景来说已经足够。
漫谈语音合成之Char2Wav模型 语音合成是指将文本转化成音频的过程,整个过程的难点可以用两个词语来形容:清晰度(Intelligibility)和自然度(Naturalness),清晰度是指合成的音频是否是干净的,是否可以被人听懂;而自然度是指合成的音频是否融合了情感上的色彩。传统的语音合成通常有两种做法,一种是合成式,另外一种是参数式,下面我们分别看它们各自的特点。 合成式(Concatenative TTS),这种方法需要大量的剪辑音频组成的数据库,然后根据文本内容从数据库中挑选相应的音频片段,把它
抛开广告法不谈,我们来全面了解一下wav2letter++,看看Facebook哪来的勇气口出狂言。
点击上方“LiveVideoStack”关注我们 ▲扫描图中二维码或点击阅读原文▲ 了解音视频技术大会更多信息 编者按:在贷后催收行业中,每个公司每天的录音量可达上万小时,因此语音识别功能对其非常重要。今天LiveVideoStack大会邀请到了洞听智能的张玉腾老师,为我们介绍在坐席辅助系统中,语音与文本的碰撞。 文/张玉腾 整理/LiveVideoStack 大家好!我是青岛洞听智能的算法工程师张玉腾,我们公司在去年四月份成立。在2016年,我们已经是联信集团的一个智能化部门,一直在做语音与文本相
语音合成(text to speech),简称TTS。将文字转化为语音的一种技术,类似于人类的嘴巴,通过不同的音色说出想表达的内容。将计算机自己产生的、或外部输入的文字信息转变为可以听得懂的、流利的汉语口语输出的技术。
AudioCraft 是一个用于音频生成的 PyTorch 库。它包含了两个最先进的 AI 生成模型 (AudioGen 和 MusicGen) 的推理和训练代码,可以产生高质量音频。该项目还提供了其他功能:
---- 新智元报道 编辑:桃子 【新智元导读】问世6年来,Transformer不仅成为NLP领域的主流模型,甚至成功向其他领域跨界,一度成为风靡AI界的机器学习架构。恰在今天,Transformers库在GitHub上星标破10万大关! 2017年,谷歌团队在论文「Attention Is All You Need」提出了开创性的NLP架构Transformer,自此一路开挂。 多年来,这一架构风靡微软、谷歌、Meta等大型科技公司。就连横扫世界的ChatGPT,也是基于Transformer
机器学习(ML)是AI的一个子集,它侧重于使计算机能够从经验中学习和改进,而无需明确编程。这意味着ML算法可以分析数据、检测模式,并基于该分析进行预测或决策。机器学习的应用包括客户细分、欺诈检测、个性化推荐等等。
我们正迈入一个由大语言模型(Large Language Model, LLM)驱动的 AI 新时代,LLM在诸如客户服务、虚拟助理、内容创作、编程辅助等各类应用中正发挥着越来越重要的作用。
LiveVideoStack:贺雯迪,你好,感谢你接受LiveVideoStack的采访,作为本次大会AI与多媒体内容生产创作专场的讲师,请先和大家介绍一下你目前负责的工作方向和演讲内容。
贺雯迪:我目前在喜马拉雅担任音频算法工程师,工作研发方向是TTS前端模块的搭建和优化(文本规整化、分词、多音字、韵律预测等),后端算法(基于深度生成模型的说话人风格转换,情感控制,音色克隆、神经声码器的优化等方向)。演讲的方向是基于现在语音合成领域中比较具有发展前瞻性和讨论性的:语音合成中风格迁移、情感合成、音色克隆等衍生方向上技术和应用方面的探讨。
虽然基于RNN的技术已经在语音识别任务中得到验证,但训练RNN网络需要的大量数据和计算能力。最近,Facebook的AI研究中心(FAIR)发表的一个研究论文,提出了一种新的单纯基于卷积神经网络(Convolutional Neural Network)的语音识别技术,而且提供了开源的实现wav2letter++,一个完全基于卷积模型的高性能的语音识别工具箱。
Coqui 文本转语音(Text-to-Speech,TTS)是新一代基于深度学习的低资源零样本文本转语音模型,具有合成多种语言语音的能力。该模型能够利用共同学习技术,从各语言的训练资料集转换知识,来有效降低需要的训练资料量。
不知道大家是否还记得年初火爆全网的反黑大剧《狂飙》中,最后几集因为导演删改剧情,演员嘴型和台词完全对不上的事吗?
随着人工智能技术的不断发展,语音克隆技术也得到了越来越多的关注和研究。目前,AI语音克隆技术已经可以实现让机器模拟出一个人的声音,甚至可以让机器模拟出一个人的语言习惯和表情。
引用下我之前写的TTS文章中的话,2023年被大家称为人工智能元年,而在2024年的当下人工智能技术已然在各行各业都展露头角。各种AI工具也层出不穷,其中 语音克隆技术 也是尤为引人瞩目的产品之一。
近日,Facebook 在年度开发者大会 F8 上宣布开源多款 AI 工具,除了 PyTorch、Caffe 等深度学习框架之外,此次开源的还包括 DensePose(可用于人体姿态估计)、Translate(可翻译 48 种语言)、ELF(可通过游戏来教机器推理)等诸多 Facebook 内部使用的库和模型。
智能语音在近年一直是个很火的话题,商业应用也在不断增加,在10月10号的深蓝&大咖面对面活动中,我们邀请到了语音界大佬陈果果博士,针对目前语音领域问题进行分享与探讨。
领取专属 10元无门槛券
手把手带您无忧上云