(本文为笔者早期所写,当时对卡尔曼滤波器理解尚未透彻,如今回顾,该模型还有所缺陷,推荐读者看卡尔曼的推导过程或者B站大佬Dr_CAN的空间)
很多在工业现场调试设备的同行都会遇到干扰问题,马达、电焊机、高频电气装置、电器开关等都会给数据采集通道带来很多高频干扰。
一阶滤波,又叫一阶惯性滤波,或一阶低通滤波。是使用软件编程实现普通硬件RC低通滤波器的功能。
单片机主要作用是控制外围的器件,并实现一定的通信和数据处理。但在某些特定场合,不可避免地要用到数学运算,尽管单片机并不擅长实现算法和进行复杂的运算。下面主要是介绍如何用单片机实现数字滤波。
声明:本文是JerryloveEmily原创,已获其授权发布,未经原作者允许请勿转载
如何有效地提高传感器的测试精度是行业的发展趋势;近来,对传感器进行实验测试过程中发现结果存在明显的工频干扰,信号中夹杂有明显噪音,具体频率为50hz,因此,近来以解决实际问题为出发点,对相关的内容进行归纳汇总;目前,消除噪音,提高传感器采集精度主要包含两种手段:1、硬件:通过电阻电容及电感构成滤波电路,对外界干扰源进行屏蔽;2、算法:通过数字信号处理,构建IIR、FIR滤波器对噪声信号进行滤除;具体内容如下所示~
引导图滤波器是一种自适应权重滤波器,能够在平滑图像的同时起到保持边界的作用,具体公式推导请查阅原文献《Guided Image Filtering》以及matlab源码:http://kaimingh
最近在做武术擂台,发现对于红外测距传感器的返回值速度很快,但是误差值很大,经过简单函数调校之后,发现还是有误差,有干扰数据,于是导入了math.h,进行的绝对值滤波,但是用循环暂存了十组数据,进行简单的加权算法,发现还是不行,于是去找了一些经典的滤波算法,算是简单记录一下。分享给大家。
Created with Raphaël 2.2.0 开始 选择正交变换,把时域信号转变为变换域信号 变换后的信号用其能量的平方根归一化 采用某一自适应算法进行滤波 结束
随着微电子控制技术的发展和人们对出行工具的日益增长的需求,一款简单易操作、容易携带、清洁无污染的两轮自平衡车开始走进大众的视野,但这种小型代步工具仍可能存在一定的不稳定性和安全隐患,本次课题主要通过在实验室制作一款简易的自平衡小车,通过手机蓝牙控制,以此模拟真实的使用者驾驶体验,在模拟实验中提升平衡车的稳定性,解决可能出现的实际问题。最终通过改造自平衡小车系统,实现基本的状态控制,并为以后其用到其它复杂的环境中提供一些实验参考。
前些时间,我在知识星球上创建了一个音视频技术社群:关键帧的音视频开发圈,在这里群友们会一起做一些打卡任务。比如:周期性地整理音视频相关的面试题,汇集一份音视频面试题集锦,你可以看看这个合集:音视频面试题集锦。再比如:循序渐进地归纳总结音视频技术知识,绘制一幅音视频知识图谱,你可以看看这个合集:音视频知识图谱。
曾经在公众号里提到很多电机控制的文章,而电机控制跟我们的工农业密切相关,可以说如果没有电机控制,我们的生活,生产将无法继续,而电机的种类也有很多,像交流异步(ACIM),直流有刷(BDC),直流无刷(BLDC),永磁同步(PMSM),不同的分类还有很多,像步进电机,私服电机,控制电机,等等,而电机的控制需要一些特殊的算法,虽然这些都是很早很经典的算法,但因其复杂,对数学有一定要求,还是有很多工程师搞不明白,更别说用MCU或者DSP去实现这些算法了,而现在你在也不用担心了,很多的厂商都提供基本的电机控制库,这些库有的是用汇编写的,有的是用C语言写的,封装成库,提供给工程师使用,像恩智浦就提供了电机控制的通用库和高级库,以及一些数学公式库,和滤波算法库,虽然厂家提供了这些库,但小猿还是奉劝如果做电机控制的工程师,自己一定要搞懂这些基础的公式算法。今天我们来简单介绍恩智浦的通用电机控制库,供大家参考。目前最新的是4.5的版本,在官网下载下面的库安装文件。直接下一步下一步安装。
可能因为进入了新学期,本人遇到了几次身边小学弟和网友的提问:机器人学和SLAM该怎么入门好?由于回答了几次问题,就借着这个机会把问题的回答整理归纳下。这篇分享仅是根据本人入门Robitics和SLAM的亲身经历,基于一步一个脚印摸索而来的路线来尽可能避免小伙伴们走我的弯路,文章内容的广度和深度应该是不如网上其他大佬们整理出来的综述,但贵在真实可靠,希望对求学的伙伴们有些帮助,文章内容若有不当之处希望读者朋友们勘误。
我身边有些朋友说现在在学校学习什么拉氏变换,Z变换,傅立叶变换没有用,传递函数没有用,差分方程没有用,只是纸上谈兵,我这里先就传递函数和拉氏变换和差分方程介绍几点不自量力的看法,我们学习拉氏变换主要是为了从脱离时域,因为时域分析有它的难度指数,我们从时域映射到S域,目的只有一个,那就是简化计算,正如我们在时域要计算卷积过来,卷积过去,我们把它映射到S域过后,就是乘积过来积乘过去,相对来说,乘积要比卷积的积分要温柔的多,然后我们在S域里面得到结论过后,再将其反映射回到时域,然后自然地在时域使用其所得的结论了。
卡尔曼滤波(Kalman Filtering)是一种用于状态估计和信号处理的全局最优滤波器。它基于状态空间模型,通过将观测数据和模型进行融合,实现对未知变量和噪声的估计。在Matlab中,我们可以使用内置的kalman滤波函数来实现Kalman滤波算法。 本文将介绍如何在Matlab中使用Kalman滤波器对数据进行滤波和估计。
本文主要提出了一个基于纯MLP架构的序列化推荐模型,其通过可学习滤波器对用户序列进行编码,在8个序列化推荐数据集上超越了Transformer等模型。
一派是基于马尔科夫性假设的滤波器方法,认为当前时刻的状态只与上一时刻的状态有关。另一派是非线性优化方法,认为当前时刻状态应该结合之前所有时刻的状态一起考虑。
在计算机监控软件中,滤波算法可是个非常重要的技术,它的任务是处理监控数据里烦人的噪声和那些没用的东西,然后提高数据的质量和准确性。对于电脑监控软件来说,滤波算法的性能分析和优化也是至关重要的,这两个可是能让软件跑得更快、更稳定的关键。下面就来给大家介绍一下相关的性能分析与优化方法:
高斯滤波是以距离为权重,设计滤波模板作为滤波系数,只考虑了像素间的空间位置上的关系,因此滤波的结果会丢失边缘的信息。
其中,横轴表示X[0,0],即位置p; 纵轴表示X[1,0],即速度v 可以看到速度v很快收敛于1.0,这是因为设置delta_t=1,即Z中的数据从0-500,每秒加1,卡尔曼滤波预测的速度与实际速度1.0很好的契合。 并且,我相信如果将横轴展开来看,卡尔曼滤波也对位置的预测具有很好的契合。
Y值越大,越稀释边缘像素的差异,各个点的权重就更接近,可以想象:当Y无限大时,每个点的权重几乎等于1,就没有保边的效果
很高兴能够参与到腾讯云AIoT应用创新大赛,有机会认识到各种行业背景的物联网爱好者,作为一个新手,接触了面向物联网领域的TencentOS Tiny系统、腾讯云物联网开发平台以及RISC-V芯片的应用实例等。
滤波优缺点: 优:可克服偶然误差;对缓慢变化的数据有很好的滤波效果。 缺:不适用于快速变化的数据。
双边滤波是一种非线性滤波器,它可以达到保持边缘、降噪平滑的效果。和其他滤波原理一样,双边滤波也是采用加权平均的方法,用周边像素亮度值的加权平均代表某个像素的强度,所用的加权平均基于高斯分布[1]。最重要的是,双边滤波的权重不仅考虑了像素的欧氏距离(如普通的高斯低通滤波,只考虑了位置对中心像素的影响),还考虑了像素范围域中的辐射差异(例如卷积核中像素与中心像素之间相似程度、颜色强度,深度距离等),在计算中心像素的时候同时考虑这两个权重。 公式1a,1b给出了双边滤过的操作,Iq为输入图像,Ipbf为滤波后图像:
滤波算法是一类用于处理信号和图像中噪声的算法。它们通常通过在信号或图像上应用一个滤波器来实现这一目的。常见的滤波算法包括均值滤波、中值滤波、高斯滤波等。
能有效克服因偶然因素引起的波动干扰,对温度,液位的变化缓慢的被测参数有良好的滤波效果
对计算机视觉、多媒体应用、通信技术等领域来说,实时的数字图像处理是其中的重点学科之一。传统的前端数字信号处理(Digital SignalProcessing,DSP)算法,例如 FFT、FIR、IIR 滤波器,大多都是利用 ASIC 或者 PDSP 来构建的,在硬件的实现中很难满足实时性的要求。现场可编程逻辑门阵列(Field ProgrammableGate Arrays, FPGA)技术在数字信号处理中的应用,将逐渐成为前端信号处理的主流。而滤波器算法在信号处理、信号检测、通信领域有着重要的作用,在实时信息处理系统中,对滤波器的性能和处理速度有着严格的要求,特别是在满足系统性能的条件下,处理速度至关重要。
图像平滑是一个重要的操作,而且有多种成熟的算法。这里主要简单介绍一下Bilateral方法(双边滤波),这主要是由于前段时间做了SSAO,需要用bilateral blur 算法进行降噪。Bilateral blur相对于传统的高斯blur来说很重要的一个特性即可可以保持边缘(Edge Perseving),这个特点对于一些图像模糊来说很有用。一般的高斯模糊在进行采样时主要考虑了像素间的空间距离关系,但是却并没有考虑像素值之间的相似程度,因此这样我们得到的模糊结果通常是整张图片一团模糊。Bilateral blur的改进就在于在采样时不仅考虑像素在空间距离上的关系,同时加入了像素间的相似程度考虑,因而可以保持原始图像的大体分块进而保持边缘。在于游戏引擎的post blur算法中,bilateral blur常常被用到,比如对SSAO的降噪。
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
原文链接:https://blog.csdn.net/humanking7/article/details/85335364
pdf版下载地址:http://pan.baidu.com/s/1hrKoza8
在一个简单的能采集声音的然后低通滤波后播放声音的嵌入式系统中就可以看出分工和模式:
保边滤波器的代表包括双边滤波、引导滤波,但是这类滤波器有一个问题,它们均将待处理的像素点放在了方形滤波窗口的中心。但如果待处理的像素位于图像纹理或者边缘,方形滤波核卷积的处理结果会导致这个边缘变模糊。
摘要:将视觉SLAM(同步定位与地图创建)方法应用于水下环境时,扬起的沉积物会导致SLAM特征点提取与追踪困难,而且人工光源的光照不均匀还会引起特征点分布不均与数量较少。针对这些问题,设计了一种水下图像半均值滤波除尘与光照均衡化特征增强算法;根据水中杂质的像素特征,按照“检测-滤波”的顺序采取从外至内的半均值滤波过程消除扬起的沉积物在图像内造成的干扰;同时,通过统计光照均匀、充足区域内的像素分布,得到同一地形下不同位置处的环境特征相似的规律,并将其用于求解水下光照模型,将图像还原为光照均衡的状态,以此来增强图像的特征,进而实现更多有效特征点的提取。最后,利用该滤波与增强算法对多种海底地形数据集进行处理,并在ORB-SLAM3算法下测试运行。结果表明,滤波与增强后的数据集能够将特征点提取数量和构建地图的点云数量平均提高200%。综上,图像滤波除尘与特征增强算法能够有效提高视觉SLAM算法的运行效果与稳定性。
高斯滤波是一种低通平滑滤波,常用于模糊处理和减少噪声信号,其中模糊处理常用于预处理,即在提取目标之前去除图像中的一些细节等,这有利于高通处理。对于二维的数字图像信号,一般通过线性滤波器和非线性滤波器的模糊处理来减少强噪声信号。平滑滤波器就是用滤波掩模确定的邻域内的像素与加权值相卷积后得到的灰度均值来代替每个像素的值,这就很容易使用硬件实现。 GAUSS 滤波算法克服了边界效应,因而滤波后的图像较好。其
距离上一篇文到现在有十天左右了,现在我又来更新啦!现在正值我们专业课程多的一个学期,还赶上疫情在家学习效率低,所以没能有精力写推文了,不过幸好大家都还在,我会一直更新的。
我们都是20届算法学长,秋招之路已经结束,收获与打击的同时,对于算法是否应该早些转开发的问题,我们发表不同观点。
y ( 0 ) = ∑ 0 N h ( i ) x ( i ) y(0)=\sum _{0}^Nh(i)x(i) y(0)=∑0Nh(i)x(i)
图像处理算法和技术在计算机视觉和图像处理领域发挥着重要作用,通过对图像进行分析、增强和转换,可以提取出有用的信息并解决实际问题。本文将以图像处理算法和技术的应用实践为中心,为你介绍一些常见的图像处理算法和技术,并通过实例展示它们在实际应用中的应用和效果。
与优秀的人一同前行,自己也会变得更加优秀,变得更加自律,今天,笔者就推荐几个高质量公众号,非常硬核,希望能够帮助大家在技术中得到更好地提升。
一直以来我经常听到很多粉丝反馈,觉得人工智能是目前最牛X的技术,想要尝试自学入行,将自己的一些想法和创意付诸现实。
这两天有小伙伴问我,如何才能做到嵌入式全栈?我用visio软件画了一张图,为大家讲解。
滤波器是什么? 滤波器是对波进行过滤的器件,一般有两个端口,一个输入信号、一个输出信号。可以说它是重要的电子元器件,滤波器把电源功率传输到设备上,大大衰减经电源传入的EMI电磁干扰信号,保
卡尔曼滤波是一种基于概率论和线性代数的算法,用于处理具有随机噪声的动态系统。其基本思想是将系统的状态表示为一个随机变量,并通过观测数据和模型方程来对该随机变量进行估计和预测。
粒子滤波(particle filter)是一种常见的滤波算法,广泛应用于目标跟踪、移动机器人等领域。网络上有不少关于粒子滤波的资料,但大多是直接给出了粒子滤波的相关公式和证明,或较为直观上的解释。作者在学习粒子滤波的过程中对一些概念和操作时常感到突兀,后来发现想要完整了解粒子滤波,需要首先了解前因,逐渐深入才能理解粒子滤波,而不是直接学习粒子滤波这个方法。
摘 要: 无线充电Qi协议提出发射器和接收器通过频率调制(FSK)方式进行正向通信,进而建立完整的通信状态控制。接收器可采用测宽法进行频率解调,然而由于电磁耦合变化、负载变化、载波占空比变化、测量量化等引起的误差,该方法无法满足实际应用的要求。该文针对传统测宽法抗干扰能力弱的问题,提出一种窗口滤波算法,通过参考相邻脉冲频率确定当前脉冲的有效频率,极大地提高了测宽法的抗干扰能力。经实例分析,改进后的测宽法抗干扰能力强、逻辑简单,为无线充电正向通信FSK解调提供一种可行的方法。
我们知道View中封装了一些动画和显示效果那我们为什么还要操作CALayer层面上呢?
《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科。以下是小编为大家精心准备的:,欢迎参考阅读!
领取专属 10元无门槛券
手把手带您无忧上云