首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Numpy中的stack,轴,广播以及CNN介绍

0].ndim + 1 axis = normalize_axis_index(axis, result_ndim) sl = (slice(None),) * axis + (_nx.newaxis...维度+1 这是和concatenate函数很重要的一个区别,也体现了API中的new axis. result_ndim = arrays[0].ndim + 1 axis = normalize_axis_index...k=2 1, 3, 1+(m-1)*2 m = q+r q = (7-1)/2 = 3 r = 0 m = 3 因此最终结果是[1, 3, 5] (1)slice default处理 等价于x[5:4..., np.newaxis] 以前的arr的shape是(3,4),经过这样的操作之后,就变成了(3,4,1),也就是3个2维数组,每个2维度数组中有4个1维数组,每个1维数组中有1个元素。...numpy中的广播 广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式。 下面的图片展示了数组 b 如何通过广播来与数组 a 兼容。

1.1K00

神经网络的数学基础

79, 3, 35, 1], [7, 80, 4, 36, 2]], [[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]]]) >>> x.ndim...可以通过tensor的ndim属性查看轴的个数。 Shape形状:数字元组,描述张量各个轴上的维度。张量维度为(),向量维度为(5,),2D张量维度(3,5),3D张量维度(3,3,5)....与逐元素操作相反,点积整合输入张量的所有条目。...基于梯度的优化算法 神经网络层对输入进行的数学转换为: \(output = relu(dot(W, input) + b)\) 张量\(W\)和张量\(b\) 是网络层的参数,被称为网络层的权重系数或者可训练参数...随机梯度下降 一个可微分函数,理论上能够找到它的最小值:最小值点导数为0,所以需要找到所有导数为0的点,然后相互比较找到最小值。 神经网络中,意味着找到一组权重值,使损失函数最小。

1.3K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用netron对mnist网络结构分析「建议收藏」

    shape(形状)代表的就是张量的一种属性,当然还有其他属性,比如数据类型等等” 再算子执行前面打断点,依次观察输入数据和输出数据的大小: (gdb) b 2124 Breakpoint 2 at 0x555555560ef8...ndata = 784 2: n->outputs[0]->ndata = 6272 3: n->inputs[0]->ndim = 4 4: n->outputs[0]->ndim = 4 (gdb)...ndata = 6272 2: n->outputs[0]->ndata = 6272 3: n->inputs[0]->ndim = 4 4: n->outputs[0]->ndim = 4 (gdb...从最后一层的模型看不出它的结构,实际上它是一个全连接层: 这一点可以通过芯原的模型转换工具的转换结果看出来,芯原的转换工具,可以将ONNX模型转换为芯原NPU吃的json文件模型,而netron是支持此类型的可视化输出的...---- lenet 模型都需要对吃进去的图像做数据归一化,libonnx实现也不例外 ---- 结束! 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。

    92920

    基于卷积神经网络的手写数字识别系统_python 卷积神经网络

    那就是数据的形状被“忽视”了。比如,输入数据是图像时,图像通常是高、长、通道方向上的3维形状。但是,向全连接层输入时,需要将3维数据拉平为1维数据。...实际上,前面提到的使用了MNIST数据集的例子中,输入图像就是1通道、高28像素、长28像素的(1, 28, 28)形状,但却被排成1列,以784个数据的形式输入到最开始的Affine层。...但是,因为全连接层会忽视形状,将全部的输入数据作为相同的神经元(同一维度的神经元)处理,所以无法利用与形状相关的信息。而卷积层可以保持形状不变。...当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。...= None def forward(self,x): #对于卷积层 需要把数据先展平 self.original_x_shape = x.shape x=x.reshape(x.shape[0],-

    69110

    卷积神经网络中的自我注意

    为什么Self-Attention 这篇文章描述了CNN的自注意力。对于这种自注意力机制,它可以在而不增加计算成本的情况下增加感受野。 它是如何工作的 对前一隐含层的特征进行重塑,使之: ?...请注意,输出的通道数量与自关注的输入相同。 这是论文中的一张图,这些图将这些操作可视化了 ? 通常,我们设置:C * = C / 8。...作为最后一步,我们将输入特征x添加到输出的加权中(gamma是另一个可学习的标量参数): ?...第17行:恢复特征的原始形状 此实现与本文中描述的算法有所不同(但等效),因为它将1x1卷积v(x)和h(x)组合在一起,并且调用为h(x)或“值”。组合的1x1转换层具有C个输入通道和C个输出通道。...此实现与本文中的算法等效,因为学习两个1x1转换层等效于学习一个具有兼容大小的转换层。 结果测试 通过在UNet块中替换conv层,我在UNet体系结构中使用了自注意力层。

    78810

    【深度学习系列】卷积神经网络详解(二)——自己手写一个卷积神经网络

    输入层---->卷积层 以上一节的例子为例,输入是一个4*4 的image,经过两个2*2的卷积核进行卷积运算后,变成两个3*3的feature_map image.png    以卷积核filter1...4.全连接层---->输出层   全连接层到输出层就是正常的神经元与神经元之间的邻接相连,通过softmax函数计算后输出到output,得到不同类别的概率值,输出概率值最大的即为该图片的类别。...从卷积后的feature_map反向传播到前一层时,由于前向传播时是通过卷积核做卷积运算得到的feature_map,所以反向传播与传统的也不一样,需要更新卷积核的参数。...(占坑明天补一下tensorflow的源码实现) 总结     本文主要讲解了卷积神经网络中反向传播的一些技巧,包括卷积层和池化层的反向传播与传统的反向传播的区别,并实现了一个完整的CNN,后续大家可以自己修改一些代码...,譬如当水平滑动长度与垂直滑动长度不同时需要怎么调整等等,最后研究了一下paddlepaddle中CNN中的卷积层的实现过程,对比自己写的CNN,总结了4个优点,底层是C++实现的,有兴趣的可以自己再去深入研究

    2.5K90

    卷积神经网络详解(二)——自己手写一个卷积神经网络

    以上一节的例子为例,输入是一个4*4 的image,经过两个2*2的卷积核进行卷积运算后,变成两个3*3的feature_map 以卷积核filter1为例(stride = 1 ): 计算第一个卷积层神经元...4.全连接层---->输出层 全连接层到输出层就是正常的神经元与神经元之间的邻接相连,通过softmax函数计算后输出到output,得到不同类别的概率值,输出概率值最大的即为该图片的类别。...从卷积后的feature_map反向传播到前一层时,由于前向传播时是通过卷积核做卷积运算得到的feature_map,所以反向传播与传统的也不一样,需要更新卷积核的参数。...(占坑明天补一下tensorflow的源码实现) 总结 本文主要讲解了卷积神经网络中反向传播的一些技巧,包括卷积层和池化层的反向传播与传统的反向传播的区别,并实现了一个完整的CNN,后续大家可以自己修改一些代码...,譬如当水平滑动长度与垂直滑动长度不同时需要怎么调整等等,最后研究了一下paddlepaddle中CNN中的卷积层的实现过程,对比自己写的CNN,总结了4个优点,底层是C++实现的,有兴趣的可以自己再去深入研究

    1.6K100

    机器学习|从0开始大模型之位置编码

    在循环神经网络中,序列与序列之间也是有顺序的,所以循环神经网络中,序列与序列之间也是有顺序的,不需要处理这种问题。...3、Transformer中的位置编码层 假设你有一个长度为L的输入序列,要计算第K个元素的位置编码,位置编码由不同频率的正弦和余弦函数给出: 函数 k:词序列中的第K个元素 d:词向量维度,比如512...def unite_shape(pos_cis, x): """调整位置编码的形状以匹配输入张量的形状。"""...ndim = x.ndim # 获取输入的维度 assert 0 ndim # 确保维度有效 assert pos_cis.shape == (x.shape...(xk_ * pos_cis).flatten(3) # 同上 return xq_out.type_as(xq), xk_out.type_as(xk) # 返回与输入类型一致的输出

    10910

    NLP经典书籍鱼书笔记4:对比计数统计和推理

    大致过程: 基于推理的方法引入某种模型(比如神经网络) 模型接收的上下文作为输入,输出各个单词的出现概率 模型产物:获得单词的分布式表示 神经网络中单词的处理方法 神经网络不能直接处理单词,需要将单词转化成固定长度的向量...模型的输入:上下文,比如['you','goodbye']这样的单词,但是需要转化为one-hot编码表示。 本文中考虑上下文的两个单词,因此模型会有两个输入层。如果是考虑N个单词,则输入层有N个。...从输入层到中间层的变换使用相同的全连接层(权重都是$W_{in}$) 从中间层到输出层神经元的变换由另一个全连接层完成(权重是$W_{out}$) 中间层的神经元是各个输入层经全连接层变换后得到的值得平均...1, 2, 3, 4, 1, 5, 6]) id_to_word {0: 'you', 1: 'say', 2: 'goodbye', 3: 'and', 4: 'i', 5: 'hello', 6:...2], [1, 3], [2, 4], [3, 1], [4, 5], [1, 6]]) target # 目标值 array

    57010

    关于深度学习系列笔记四(张量、批量、Dense)

    ('数据张量=',x.ndim) print('数据类型=',x.dtype) x = np.array(12) printshape(x) #标量即0D张量 数据形状= () x = np.array...#‰ 轴的个数(阶):例如,3D 张量有 3 个轴,矩阵有 2 个轴。这在 Numpy 等 Python 库中也叫张量的ndim。...#‰ 形状:这是一个整数元组,表示张量沿每个轴的维度大小(元素个数)。例如,前面矩阵示例的形状为(3, 5),3D 张量示例的形状为(3, 3, 5)。...它是导数这一概念向多元函数导数的推广。多元函数是以张量作为输入的函数。...# 随机梯度下降,给定一个可微函数,理论上可以用解析法找到它的最小值: # 函数的最小值是导数为0 的点,因此你只需找到所有导数为0 的点,然后计算函数在其中哪个点具有最小值。

    75020

    Python 之 Numpy 框架入门

    其定义如下: numpy.arange([start, ]stop, [step, ]dtype=None, *, like=None) 参数 描述 start 起始值,默认为0 stop 终止值(不包含...numpy.arange 默认从 0 开始生成数组,间隔为 1。 比如,下面代码会生成一个元素值不超过 4 的数组,即范围是 [0,4) 。...其规则约束如下: 两个数组的形状相同 维数比较少的数组,需要是一维数组。...翻转数组 修改数组维度 连接数组 分割数组 数组元素的添加与删除 修改数组的形状 主要有以下函数: 函数 描述 reshape 不改变数据的条件下修改形状 flat 数组元素迭代器 flatten 返回一份数组拷贝...取值范围为 [0, a.ndim] start:默认为零,表示完整的滚动。会滚动到特定位置。取值范围为 [-a.ndim, a.ndim] 注意:二维只有 0、1 两个轴,三维有 0、1、2 三个轴。

    28510

    【动手学深度学习】深入浅出深度学习之利用神经网络识别螺旋状数据集

    3.调用load_data()函数:通过调用load_data()函数,生成数据集的特征数组x和标签数组t。 4.打印数组形状:通过print()语句打印出数据集特征数组x和标签数组t的形状。...然后,通过上游梯度dout与权重W的转置的乘积,得到对输入x的梯度dx。接下来,计算权重W的梯度dW,通过将输入x的转置与上游梯度dout的乘积得到。...使用[...]操作符可以确保在赋值时不改变梯度数组的形状和数据类型。最后返回输入的梯度dx,以便反向传播给前一层。...3.使用np.argmax函数找到每个点概率最大的类别索引,得到预测的类别标签predict_cls。然后将predict_cls重新调整为与网格一样的形状,得到二维数组Z,用于绘制决策边界。...],rotation=0表示刻度标签不旋转,size=12表示刻度标签的字体大小。

    20910

    NumPy 学习笔记(一)

    0 填充,形状为 shape 的数组 a = np.zeros((2, 2)) print("a", a, sep=" = ") b = np.ones((2, 2)) print("b", b,...3*3 的单位矩阵 print("d", d, sep=" = ") 注:np.array(object, dtype = None, copy = True, order = None, subok...")  3、数组属性:     ①shape:返回数组形状,如 (2, 3) 表示 2 行 3 列的 2 维数组     ②ndim:返回数组维度     ③size:返回数组里元素个数     ④itemsize...(arr.ndim) # 输出 1 arr.shape = (2, 4, 3) # 修改为 3 维数组 print("arr's ndim: ", arr.ndim) # 输出 3...] # 输出对象的内存信息 print(arr.flags) 4、数组的简单运算:       大部分数学运算均只对在相应元素进行,如运算四则运算加减乘除,并且运算支持广播       (即不同形状的数组如果符合某种条件则可以进行运算

    98910
    领券