首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用Prophet在Python中进行时间序列预测

df.dtypes 确认数据框中的列是正确的数据类型,就可以ds在数据框中创建一个新列,是该列的完全相同的副本: df['ds'] = df['date'] df['y'] = df['value'...Box-Cox变换 通常在预测中,您会明确选择一种特定类型的幂变换,以将其应用于数据以消除噪声,然后再将数据输入到预测模型中(例如,对数变换或平方根变换等)。...但是,有时可能难以确定哪种变换适合您的数据。  Box-Cox变换是一种数据变换,用于评估一组Lambda系数(λ)并选择可实现最佳正态性近似值的值。...对于我们的示例,我们将让该boxcox方法确定用于变换的最佳λ,并将该值返回给名为lam的变量: # 将Box-Cox转换应用于值列并分配给新列y df['y'], lam = boxcox(df[...我们将对预测数据帧中的特定列进行逆变换,并提供先前从存储在lam变量中的第一个Box-Cox变换中获得的λ值: 现在,您已将预测值转换回其原始单位,现在可以将预测值与历史值一起可视化: ?

1.7K10

特征工程系列:特征预处理(下)

0x00 前言 数据预处理包含数据探索、数据清洗和特征预处理三部分,《特征工程系列:特征预处理(上)》介绍了无量纲化和特征分桶相关的处理方法,本章将继续介绍特征预处理中的统计变换和类别特征编码相关内容。...当应用于倾斜分布时 Log 变换是很有用的,因为Log变换倾向于拉伸那些落在较低的幅度范围内自变量值的范围,倾向于压缩或减少更高幅度范围内的自变量值的范围。从而使得倾斜分布尽可能的接近正态分布。...4)实现代码 fcc_survey_df['Income_log'] = np.log((1+fcc_survey_df['Income'])) 2.Box-Cox变换 1)定义 Box-Cox 变换是另一个流行的幂变换函数簇中的一个函数...Box-Cox变换的主要特点是引入一个参数,通过数据本身估计该参数进而确定应采取的数据变换形式,Box-Cox变换可以明显地改善数据的正态性、对称性和方差相等性,对许多实际数据都是行之有效的。...当一个类别特征列包括了极多不同类别时(如家庭地址,动辄上万)时,可以采用。

2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    特征工程系列:特征预处理(下)

    当应用于倾斜分布时 Log 变换是很有用的,因为Log变换倾向于拉伸那些落在较低的幅度范围内自变量值的范围,倾向于压缩或减少更高幅度范围内的自变量值的范围。从而使得倾斜分布尽可能的接近正态分布。...4)实现代码 fcc_survey_df['Income_log'] = np.log((1+fcc_survey_df['Income'])) 2.Box-Cox变换 1)定义 Box-Cox 变换是另一个流行的幂变换函数簇中的一个函数...Box-Cox变换的主要特点是引入一个参数,通过数据本身估计该参数进而确定应采取的数据变换形式,Box-Cox变换可以明显地改善数据的正态性、对称性和方差相等性,对许多实际数据都是行之有效的。...缺点:它隐含了一个假设:不同的类别之间,存在一种顺序关系。在具体的代码实现里,LabelEncoder会对定性特征列中的所有独特数据进行一次排序,从而得出从原始输入到整数的映射。...当一个类别特征列包括了极多不同类别时(如家庭地址,动辄上万)时,可以采用。

    84620

    特征工程系列:特征预处理(下)

    (上)》介绍了无量纲化和特征分桶相关的处理方法,本章将继续介绍特征预处理中的统计变换和类别特征编码相关内容。...当应用于倾斜分布时 Log 变换是很有用的,因为Log变换倾向于拉伸那些落在较低的幅度范围内自变量值的范围,倾向于压缩或减少更高幅度范围内的自变量值的范围。从而使得倾斜分布尽可能的接近正态分布。...4)实现代码 fcc_survey_df['Income_log'] = np.log((1+fcc_survey_df['Income'])) 2.Box-Cox变换 1)定义 Box-Cox 变换是另一个流行的幂变换函数簇中的一个函数...Box-Cox变换的主要特点是引入一个参数,通过数据本身估计该参数进而确定应采取的数据变换形式,Box-Cox变换可以明显地改善数据的正态性、对称性和方差相等性,对许多实际数据都是行之有效的。...当一个类别特征列包括了极多不同类别时(如家庭地址,动辄上万)时,可以采用。

    2.5K20

    机器学习基础 - 偏度、正态化以及 Box-Cox 变换

    不同的偏度意味着数据分布与正态分布的不同偏离程度,因此需要使用不同的变换。可以将偏度分成三级,然后针对每个级别采用不同方法。...首先,我们将先变换中等偏度的分布,然后再处理高偏度的数据。 .中度正偏 - 开方变换 对于中度正偏的特征,我们直接调用 np.sqrt 开根号伺候。...请看,当 时, 对于给定的数据,Box-Cox 变换的主要问题就是要估计出合适的参数值 。有了这个值就可以对数据作变换和反变换了。...调用 scipy 的 boxcox 至于参数值是如何从数据中估计的我们先不管它,接下来直接使用 SciPy 提供的 Box-Cox 来估计参数以及变换数据。...可以看出来,在这个例子中, Box-Cox 变换比开根号和对数变换的纠偏效果更好。 接着,我们通过 QQ-plot 来检验一下原始数据、对数变换以及 Box-Cox 变换的正态性。

    5.3K63

    特征工程系列学习(一)简单数字的奇淫技巧(下)

    , 两个简单的模型 (有对数变换和没有对数变换) 在预测目标时同样不好, 而有对数变换的特征表现略差。...平方根变换和对数变换的简单推广称为Box-Cox变换: 图2-12, 展示出了在 =0(log变换),=0.25,=0.5(平方根的缩放和移位版本),λ=0.75, 和=1.5时的Box-Cox变换。...设置小于1时压缩较高的值,并且设置λ大于1时具有相反的效果。   只有当数据为正值时, Box-Cox 公式才能工作。对于非正数据, 可以通过加上固定常量来移动数值。...当应用 Box-Cox 变换或更一般的功率变换时, 我们必须确定参数的值。这可能是通过最大似然(找到的,使产生的变换信号的高斯似然最大) 或贝叶斯方法。...这个定义可以从众所周知的勾股定理中得到,给出三角形两边的长度,可以得到斜边长度。 L2 范数将求特征的各数据点的平方和, 然后取平方根。L2 规范化后, 该特征列具有范数1。

    44020

    Prophet在R语言中进行时间序列数据预测

    Box-Cox变换 通常在预测中,您会明确选择一种特定类型的幂变换,以将其应用于数据以消除噪声,然后再将数据输入到预测模型中(例如,对数变换或平方根变换等)。...但是,有时可能难以确定哪种变换适合您的数据。 Box-Cox变换是一种数据变换,用于评估一组Lambda系数(λ)并选择可实现最佳正态性近似值的值。...如果我们将新转换的数据与未转换的数据一起绘制,则可以看到Box-Cox转换能够消除随着时间变化而观察到增加的方差: ?...forecast <- predict(m, future) 此时,Prophet将创建一个预测变量的新数据框,其中包含名为的列下的未来日期的预测值yhat。...逆Box-Cox变换 由于先知用于Box-Cox转换后的数据,因此您需要将预测值转换回其原始单位。要将新的预测值转换回其原始单位,您将需要执行Box-Cox逆转换。

    1.6K20

    常用的时间序列分析方法总结和代码示例

    这是因为我们分析的是每小时的数据,这些季节变化是在一天内观察到的,并没有直接的关联。所以我们可以尝试将数据重新采样到每日间隔,并在一天的时间段内进行分解。...在分析核密度估计(kde)图时,很明显这个变量的分布是多模态的,这意味着它由2个或更多的“钟形”组成。在本文的后续阶段中,我们将尝试将变量转换为类似于正态分布的形式。...第一列和第一行中的其他图是相同的,但它们的可视化方式不同。这些是散点图,可以确定两个变量是如何相关的。所以一个点的颜色越深,或者离中心圆越近,这个区域内点的密度就越高。...Box-Cox转换 由于我们已经发现气温时间序列是平稳的,但不是正态分布,所以可以尝试使用Box-Cox变换来修复它。这里使用scipy包及其函数boxcox。...BoxCox变换后的时间序列分布,可以看到,它还远远不能被称为“正态”分布。

    23310

    特征工程之异常值处理

    将区间 , 的值视为正常值范围,在 , 外的值视为离群值。...BOX-COX转换 优势: Box 和 Cox在1964年提出的Box-Cox变换可使线性回归模型满足线性性、独立性、方差齐性以及正态性的同时,又不丢失信息,此种变换称之为Box—Cox变换。...误差与y相关,不服从正态分布,于是给线性回归的最小二乘估计系数的结果带来误差 使用Box-Cox变换族一般都可以保证将数据进行成功的正态变换,但在二分变量或较少水平的等级变量的情况下,不能成功进行转换,...时两种方法均可,优先考虑普通的平方变换。...倒数转换 平方根后取倒数 平方根后再取反正弦 幂转换 使用kaggle里的 Housing Price 竞赛数据进行Box-Cox变换 import numpy as np import pandas

    2.4K31

    特征锦囊:怎么尽可能地修正数据倾斜的特征?

    线性回归模型满足线性性、独立性、方差齐性以及正态性的同时,又不丢失信息,此种变换称之为Box—Cox变换。...Box-Cox变换是Box和Cox在1964年提出的一种广义幂变换方法,是统计建模中常用的一种数据变换,用于连续的响应变量不满足正态分布的情况。...Box-Cox变换之后,可以一定程度上减小不可观测的误差和预测变量的相关性。...Box-Cox变换的主要特点是引入一个参数,通过数据本身估计该参数进而确定应采取的数据变换形式,Box-Cox变换可以明显地改善数据的正态性、对称性和方差相等性,对许多实际数据都是行之有效的。...Skew > 0.5 : 在Python中怎么使用Box-Cox 转换呢?

    83310

    特征工程(一):

    ,转换为可以在 R,Python 或 Scala 中最喜欢的建模库中尝试的格式,将预测转储回 csv 文件,由评估程序分析,迭代多次,最后由生产团队用 C++ 或 Java 重写,运行所有数据,并将最终预测输出到另一个数据库...用户可以将歌曲或电影放在无限播放中,或者使用脚本反复检查流行节目的门票可用性,这会导致播放次数或网站访问计数迅速上升。当数据可以以高的体积和速度产生时,它们很可能包含一些极值。...pandas.qcut将数据映射到所需数量的分位数。 例子2-5。按分位数分箱计数。 ? 对数转换 在“量化或装箱”中,我们简要地介绍了把计数的对数映射到指数宽度箱的概念。让我们现在再看一看。 ?...当应用 Box-Cox 变换或更一般的功率变换时, 我们必须确定参数 λ 的值。这可能是通过最大似然(找到的λ,使产生的变换信号的高斯似然最大) 或贝叶斯方法。...简单的对数变换和最优的 Box-Cox 变换都使正尾部接近正态分布。最优的 Box-Cox 变换比对数变换更缩小尾部,由于尾部在红色对角线等值线下平展可以明显看出。 例子 2-14。

    1.2K30

    Pandas中的这3个函数,没想到竟成了我数据处理的主力

    导读 学Pandas有一年多了,用Pandas做数据分析也快一年了,常常在总结梳理一些Pandas中好用的方法。...这里仍然举两个小例子: ①取所有数值列的数据最大值。当然,这个处理其实可以直接调用max函数,但这里为了演示apply应用,所以不妨照此尝试: ?...而在Pandas框架中,这两种含义都有所体现:对一个Series对象的每个元素实现字典映射或者函数变换,其中后者与apply应用于Series的用法完全一致,而前者则仅仅是简单将函数参数替换为字典变量即可...applymap是将接收函数应用于DataFrame的每个元素,以实现相应的变换。...04 小结 apply、map和applymap常用于实现Pandas中的数据变换,通过接收一个函数实现特定的变换规则; apply功能最为强大,可应用于Series、DataFrame以及DataFrame

    2.5K10

    优思学院|六西格玛中的非正态的数据如何处理?教你这一招

    正态分佈的假设 正态分布的假设,经常应用于很多统计分析方法中,例如控制图(Control Chart)、 制程能力分析(Cp/Cpk)、t-检验、及变异数分析 (Analysis of variance...当数据不是正态分布时,则此类资料非服从或接近正态分布,我们必须进一步探讨并采取补救措施,包括调查原因、或者进行数据转换、或使用其他类型的分布)。...为了达到此目的,Box-Cox转换方法自Lambda=-5到 Lambda=+5间找寻最佳的值 。 ​...Box-Cox转换方法 非正态的数据可以利用Box Cox Transformation 转化为正态的数据,这一个颇常用的方法。...第2步:使用Box Cox变换对数据进行变换 变换后的数据: 第3步:再次测试正态性 从上图中,P值>0.05,因此很明显,数据遵循正态分布,从直方图中我们也可以看到数据也是均匀分布的。

    39610

    不会做特征工程的 AI 研究员不是好数据科学家!上篇 - 连续数据的处理方法

    当应用于倾斜分布时 Log 变换是很有用的,因为他们倾向于拉伸那些落在较低的幅度范围内自变量值的范围,倾向于压缩或减少更高幅度范围内的自变量值的范围。从而使得倾斜分布尽可能的接近正态分布。...经过 log 变换后描述开发者收入分布的直方图 Box-Cox 变换 Box-Cox 变换是另一个流行的幂变换函数簇中的一个函数。...现在让我们在开发者数据集的收入特征上应用 Box-Cox 变换。首先我们从数据分布中移除非零值得到最佳的值,结果如下。...,让我们在取值为 0 和 λ(最佳取值 λ )时使用 Box-Cox 变换对开发者收入特征进行变换。...经过 Box-Cox 变换后开发者的收入分布 变换后的特征在上述数据框中描述了。就像我们期望的那样,Income_log 和 Income_boxcox_lamba_0 具有相同的取值。

    1.7K100

    时间序列分解:将时间序列分解成基本的构建块

    季节性:系列中的任何常规季节性模式。比如,夏季冰淇淋的销量通常高于冬季。 残差:这是我们考虑到趋势和季节性后剩下的部分。...为了计算和可视化的渐变,可以通过对数变换或Box-Cox变换将乘法模型转换为加法模型: 分解是如何工作的 有多种算法和方法可以将时间序列分解为三个分量。以下的经典方法,经常会使用并且非常直观。...statmodels中包含了seasonal_decomposition函数可以帮我们来分解时间序列,并在我们要在调用函数时指定这是一个“乘法”模型: from statsmodels.tsa.seasonal...通过应用Scipy的函数boxcox ,可以使用Box-Cox变换稳定方差,这样可以将序列转换为一个加法模型: # Import packages from statsmodels.tsa.seasonal...但是我们看到残差在早期和后期具有更高的波动性。所以在为这个时间序列构建预测模型时,需要考虑到这一点。 总结 在这篇文章中,我们展示了如何将时间序列分解为三个基本组成部分:趋势、季节性和残差。

    1.4K10

    「特征工程」之零基础入门数据挖掘

    BOX-COX转换 关于box-cox转换,一般是用于连续的变量不满足正态的时候,在做线性回归的过程中,一般线性模型假定: 其中ε满足正态分布,但是利用实际数据建立回归模型时,个别变量的系数通不过。...)上述方法很难实现正态化处理,所以优先使用BOX-COX转换,但是当P值>0.003时两种方法均可,优先考虑普通的平方变换。...BOX-COX的变换公式: 具体实现: from scipy.stats import boxcox boxcox_transformed_data = boxcox(original_data) 箱线图...18-25, 26-35, 36-60, 61以上的若干组,可以使用pandas中的cut bins = [18, 25, 35, 60, 100] # 定义箱子的边 cats = pd.cut...,pandas将根据数据中的最小值和最大值计算出等长的箱子 data2 = np.random.rand(20) print(pd.cut(data2, 4, precision=2)) # precision

    1.1K41
    领券