a) 使用read_csv将csv文件导入。你应该在文件中添加数据的分隔符。...data = pd.read_excel('file_name.xls') c) 将数据帧导出到csv文件,使用to_csv data.to_csv("file_name.csv", sep=';',...基本统计 a) describe方法只给出数据的基本统计信息。默认情况下,它只计算数值数据的主统计信息。结果用pandas数据帧表示。 data.describe() ?...d) 通过传递参数include='all',将同时显示数字和非数字数据。 data.describe(include='all') ? e) 别忘了通过在末尾添加.T来转置数据帧。...布尔索引:iloc data.iloc[, ]按数字选择行和列 a) 选择数据集的第4行。 data.iloc[3] ? b) 从所有列中选择一个行数组。
另见 Pandas read_csv函数的官方文档 访问主要的数据帧组件 可以直接从数据帧访问三个数据帧组件(索引,列和数据)中的每一个。...二、数据帧基本操作 在本章中,我们将介绍以下主题: 选择数据帧的多个列 用方法选择列 明智地排序列名称 处理整个数据帧 将数据帧方法链接在一起 将运算符与数据帧一起使用 比较缺失值 转换数据帧操作的方向...许多秘籍将与第 1 章,“Pandas 基础”中的内容类似,这些内容主要涵盖序列操作。 选择数据帧的多个列 选择单个列是通过将所需的列名作为字符串传递给数据帧的索引运算符来完成的。.../img/00017.jpeg)] 在某些情况下,需要选择数据帧的一列。...更多 重要的是要知道,这种延迟切片不适用于列,仅适用于数据帧的行和序列,也不能同时选择行和列。
将水平列名称转换为垂直列值的某些通用术语是“融化”,“解除堆叠”或“取消旋转”。...unstack方法还枢转垂直数据,但仅适用于索引中的数据。 第 3 步通过使用set_index方法移动将和不会旋转到索引中的两个列来开始此过程。...这些列仍具有无用的名称属性Info,该属性已重命名为None。 通过将步骤 3 中的结果数据帧强制为序列,可以避免清理多重索引列。squeeze方法仅适用于单列数据帧,并将其转换为序列。...晚上 7 点 更多 此秘籍的最终结果是带有多重索引列的数据帧。 使用此数据帧,可以仅选择犯罪或交通事故。xs方法允许您从任何索引级别中选择一个值。...第 4 步创建一个特殊的额外数据帧来容纳仅包含日期时间组件的列,以便我们可以在第 5 步中使用to_datetime函数将每一行立即转换为时间戳。
pandas 将 Excel 文件中的数据转换为 Pandas 数据帧。 Pandas 内部为此使用 Excel rd库。...二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择的高级技术,如何选择数据子集,如何从数据集中选择多个行和列,如何对 Pandas 数据帧或一序列数据进行排序,如何过滤 Pandas 数据帧的角色.../img/dab57015-7753-4026-9211-ffccb1e7da5c.png)] 从前面的屏幕快照中可以看出,选择多个列将创建另一个数据帧,而仅选择一个列将创建series对象。...Pandas 有一种选择行和列的方法,称为loc。 我们将使用loc方法从之前创建的数据集中调用数据帧。...最后,我们看到了一些使我们可以使用索引进行数据选择的方法。 在下一节中,我们将学习如何重命名 Pandas 数据帧中的列。
下面,我们会展示一些性能对比,以及我们可以利用机器上更多的资源来实现更快的运行速度,甚至是在很小的数据集上。 转置 分布式转置是 DataFrame 操作所需的更复杂的功能之一。...在以后的博客中,我们将讨论我们的实现和一些优化。目前,转置功能相对粗糙,也不是特别快,但是我们可以实现一些简单优化来获得更好的性能。...我什么时候应该调用 .persist() 将 DataFrame 保存在内存中? 这个调用在 Dask 的分布式数据帧中是不是有效的? 我什么时候应该重新分割数据帧?...这个调用返回的是 Dask 数据帧还是 Pandas 数据帧? 使用 Pandas 的数据科学家不一定非得是分布式计算专家,才能对数据进行高效分析。Dask 要求用户不断了解为计算而构建的动态任务图。...使用 Pandas on Ray 的时候,用户看到的数据帧就像他们在看 Pandas 数据帧一样。
下面的代码显示了必要的 import 语句: ? 使用 Pandas 库,你可以将数据文件加载到容器对象(称为数据帧, dataframe)中。...顾名思义,这种类型的容器是一个框架,它使用 Pandas 方法 pd.read_csv() 读入的数据,该方法是特定于 CSV 文件的。...将每个 CSV 文件转换为 Pandas 数据帧对象如下图所示: ? 检查数据 & 清理脏数据 在进行探索性分析时,了解您所研究的数据是很重要的。幸运的是,数据帧对象有许多有用的属性,这使得这很容易。...因此,我将在每个数据帧中保留的唯一列是 “State”、“Participation”、“Total” (仅SAT) 和 “Composite” (仅ACT)。...这种类型转换的第一步是从每个 ’Participation’ 列中删除 “%” 字符,以便将它们转换为浮点数。下一步将把除每个数据帧中的 “State” 列之外的所有数据转换为浮点数。
简化将数据转换为 DataFrame 对象的过程,而这些数据基本是 Python 和 NumPy 数据结构中不规则、不同索引的数据; 基于标签的智能切片、索引以及面向大型数据集的子设定; 更加直观地合并以及连接数据集...用于将一个 Series 中的每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个 dict 或 Series。...Isin () 有助于选择特定列中具有特定(或多个)值的行。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 的列返回数据帧列的一个子集。
: 对象可以显式地对齐至一组标签内,或者用户可以简单地选择忽略标签,使Series、 DataFrame等自动对齐数据; 灵活的分组功能,对数据集执行拆分-应用-合并等操作,对数据进行聚合和转换; 简化将数据转换为...用于将一个Series中的每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个dict或Series。...Isin()有助于选择特定列中具有特定(或多个)值的行。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用copy ()函数。...,基于dtypes的列返回数据帧列的一个子集。
数据摄取 原始数据位于一系列CSV文件中。我们首先将其转换为Parquet格式,因为大多数数据湖都存在于存储有Parquet文件的对象存储中。...这将以正确的数据类型打开CSV,然后将它们另存为Parquet,保存在“ raw_data”文件夹中。 浏览数据集,有数字列、分类列和布尔列。...打开`A_First_Model.ipynb` 在本笔记本的开头,您可以选择要加载的库集。 RAPIDS集或Pandas集。只需运行这些单元格之一。 该笔记本仅加载训练和测试数据集。...从包含大量缺失值的列中进行一些简单的筛选 值得注意的是,尽管RAPIDS`cudf`在很大程度上替代了“ pandas”,但我们确实需要更改某些部分以使其无缝运行。...生成的索引也可以按照常规通过iloc直接与cuDF数据帧一起使用。 评估模型 通过训练我们的模型,我们可以查看模型中的混淆矩阵和auc得分。
选自 Medium 作者:George Seif 机器之心编译 参与:思源 本文转自机器之心,转载需授权 Pandas 是一个 Python 软件库,它提供了大量能使我们快速便捷地处理数据的函数和方法...一般而言,Pandas 是使 Python 成为强大而高效的数据分析环境的重要因素之一。...(11)删除特征 df.drop('feature_variable_name', axis=1) axis 选择 0 表示行,选择表示列。...(13)将 DataFrame 转换为 NumPy 数组 df.as_matrix() (14)取 DataFrame 的前面「n」行 df.head(n) (15)通过特征名取数据 df.loc[feature_name...)选定特定的值 以下代码将选定「size」列、第一行的值: df.loc([0], ['size']) 原文链接: https://towardsdatascience.com/23-great-pandas-codes-for-data-scientists-cca5ed9d8a38
本文将介绍创建Pandas DataFrame的6种方法。...上面的代码创建了一个3行3列的二维数据表,结果看起来是这样: ? 嗯,所有数据项都是NaN。...由于我们没有定义数据帧的列名,因此Pandas默认使用序号作为列名。...那么可以使用下面的代码将其转换为Pandas DataFrame: fruits = pd.read_excel('fruits.xlsx') 得到的数据帧看起来是这样: ?...6、将CSV文件转换为Pandas DataFrame 假设你有一个CSV文件,例如“fruits.csv“,可以使用如下的代码 将其转换为DataFrame: fruits = pd.read_csv
帧转换 (Frame Conversion) 对于当前存在的帧,可以将其转换为一个 Numpy 或 Pandas dataframe 的形式,如下所示: numpy_df = datatable_df.to_numpy...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取的数据帧转换为 Pandas dataframe 形式,并比较所需的时间,如下所示: %...▌选择行/列的子集 下面的代码能够从整个数据集中筛选出所有行及 funded_amnt 列: datatable_df[:,'funded_amnt'] ?...这里展示的是如何选择数据集中前5行3列的数据,如下所示: datatable_df[:5,:3] ?...datatable_df[dt.f.loan_amnt>dt.f.funded_amnt,"loan_amnt"] ▌保存帧 在 datatable 中,同样可以通过将帧的内容写入一个 csv 文件来保存
我们减了 4 列,因此列数从 14 个减少到 10 列。 2.选择特定列 我们从 csv 文件中读取部分列数据。可以使用 usecols 参数。...() 3.nrows 可以使用 nrows 参数,创建了一个包含 csv 文件前 5000 行的数据帧。...df.dropna(axis=0, how='any', inplace=True) 9.根据条件选择行 在某些情况下,我们需要适合某些条件的观测值(即行) france_churn = df[(df.Geography...df[['Geography','Exited','Balance']].sample(n=6).reset_index(drop=True) 17.将特定列设置为索引 我们可以将数据帧中的任何列设置为索引...我发现使用 Pandas 创建基本绘图更容易,而不是使用其他数据可视化库。 让我们创建平衡列的直方图。 ? 26.减少浮点数小数点 pandas 可能会为浮点数显示过多的小数点。
帧转换 (Frame Conversion) 对于当前存在的帧,可以将其转换为一个 Numpy 或 Pandas dataframe 的形式,如下所示: numpy_df = datatable_df.to_numpy...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取的数据帧转换为 Pandas dataframe 形式,并比较所需的时间,如下所示:...▌选择行/列的子集 下面的代码能够从整个数据集中筛选出所有行及 funded_amnt 列: datatable_df[:,'funded_amnt'] ?...这里展示的是如何选择数据集中前5行3列的数据,如下所示: datatable_df[:5,:3] ?...datatable_df[dt.f.loan_amnt>dt.f.funded_amnt,"loan_amnt"] ▌保存帧 在 datatable 中,同样可以通过将帧的内容写入一个 csv 文件来保存
Billy Bonder 61 5 5 Ayoung Atiches 16 6 5 Brian Black 16 7 7 Bryce Brice 14 8 8 Betty Btisan 15 # 将两个数据帧按照左和右数据帧的...时将索引列设置为名字和姓氏 df = pd.read_csv('pandas_dataframe_importing_csv/example.csv', index_col=['First Name'...现在,我们将创建一个“宽的”数据帧,其中行数按患者编号,列按观测编号,单元格值为得分值。...import pandas as pd from sklearn import preprocessing # 设置图表为内联 %matplotlib inline # 创建示例数据帧,带有未规范化的一列...first_name 1 last_name 2 age 3 preTestScore Name: 0, dtype: object ''' # 将数据帧替换为不包含第一行的新数据帧
cuDF:数据帧操作 cuDF提供了类似Pandas的API,用于数据帧操作,因此,如果知道如何使用Pandas,那么已经知道如何使用cuDF。...数据帧转换为cuDF数据帧(但不建议这样做): import pandas as pd import cudf df = pd.DataFrame({'a': [0, 1, 2, 3],'b': [0.1..., 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(df) 也可以做相反的事情,将cuDF数据帧转换为pandas数据帧: import cudf...好吧,首先,需要获得与RAPIDS兼容的NVIDIA GPU卡。如果不想花时间找出硬件规格的最佳选择,那么NVIDIA将发布Data Science PC。...此数据帧使用大约15 GB的内存)训练XGBoost模型在CPU上花费1分钟46s(内存增量为73325 MiB) ,在GPU上仅花费21.2s(内存增量为520 MiB)。
数据加载与初步检查1.1 数据加载在开始任何预处理之前,首先需要将数据加载到Pandas DataFrame中。Pandas支持多种文件格式,如CSV、Excel、JSON等。...import pandas as pd# 加载CSV文件df = pd.read_csv('data.csv')1.2 初步检查加载数据后,应该对数据进行初步检查,以了解其结构和内容。...使用dtype参数强制指定某些列的数据类型,或者在加载后使用astype()转换数据类型。2. 处理缺失值2.1 缺失值检测缺失值是数据集中常见的问题之一。...# 将某列转换为整数类型df['column'] = df['column'].astype(int)# 将某列转换为日期时间类型df['date_column'] = pd.to_datetime(df...使用errors='coerce'参数将无法转换的值设置为NaN,以便后续处理。4. 数据标准化与归一化4.1 标准化标准化是将数据转换为均值为0、标准差为1的过程。
领取专属 10元无门槛券
手把手带您无忧上云