假设我们要把 emp 表中的 ename、job 和 sal 字段的值整合到一列中,每个员工的数据(按照 ename -> job -> sal 的顺序展示)是紧挨在一块,员工之间使用空行隔开。...KING PRESIDENT 5000 (NULL) MILLER CLERK 1300 (NULL) 解决方案 将多列的数据整合到一列展示可以使用...使用 case when 条件1成立 then ename when 条件2成立 then job when 条件3成立 then sal end 可以将多列的数据放到一列中展示,一行数据过 case...when 转换后最多只会出来一个列的值,要使得同一个员工的数据能依次满足 case when 的条件,就需要复制多份数据,有多个条件就要生成多少份数据。...使用笛卡尔积可以"复制"出多份数据,再对这些相同的数据编号(1-4),编号就作为 case when 的判断条件。
引言 在数据分析和处理中,对数据进行排序是常见的需求。Pandas库提供了强大的功能来实现数据的排序操作,无论是单列排序还是多列排序,都能轻松应对。...本文将由浅入深地介绍Pandas中单列和多列排序的方法、常见问题及报错,并提供解决方案。 单列排序 基本概念 单列排序是指根据DataFrame中的某一列的数据值对整个DataFrame进行排序。...解决方案: sorted_df_reset = df.sort_values(by='age').reset_index(drop=True) 多列排序 基本概念 多列排序是指根据多个列的数据值对DataFrame...sort_values()方法同样支持多列排序,只需传入一个包含多个列名的列表即可。排序时,Pandas会按照列表中列的顺序依次排序。...总结 通过本文的介绍,我们了解了Pandas中单列和多列排序的基本用法、常见问题及其解决方案。掌握这些知识可以帮助我们在实际数据分析工作中更加高效地处理数据。
文章目录 1.修改单列的数据类型 2.修改指定多列的数据类型 3.创建dataframe时,修改数据类型 4.读取时,修改数据类型 5.自动 1.修改单列的数据类型 import pandas as...pd.read_csv('test.csv') df['column_name'] = df['column_name'].astype(np.str) print(df.dtypes) 2.修改指定多列的数据类型...import pandas as pd df[['c3','c5']] = df[['c3','c5']].apply(pd.to_numeric) print(df.dtypes) 3.创建dataframe...时,修改数据类型 import pandas as pd # method1 df = pd.DataFrame(data, dtype='float') print(df.dtypes) # method2...df = pd.DataFrame(data, dtype=np.float64) print(df.dtypes) 4.读取时,修改数据类型 import pandas as pd df = pd.read_csv
- 问题 - 怎么将这个多行多列的数据 变成一列?...- 1 - 不需保持原排序 选中所有列 逆透视,一步搞定 - 2 - 保持原排序:操作法一 思路直接,为保排序,操作麻烦 2.1 添加索引列 2.2 替换null值,避免逆透视时行丢失,后续无法排序...2.3 逆透视其他列 2.4 再添加索引列 2.5 对索引列取模(取模时输入参数为源表的列数,如3) 2.6 修改公式中的取模参数,使能适应增加列数的动态变化 2.7 再排序并删列 2.8...筛选掉原替换null的行 - 3 - 保持排序:操作法二 先转置,行标丢失,新列名可排序 有时候,换个思路,问题简单很多 3.1 转置 3.2 添加索引列 3.3 逆透视 3.4 删列 -...4 - 公式一步法 用Table.ToColumns把表分成列 用List.Combine将多列追加成一列 用List.Select去除其中的null值
更多 Python 数据处理的干货,敬请关注!!!! 前言 pandas 在1.0版本发布后,更新频率非常高,今天我们看看关于频率统计的一个新方法。...---- 列频率统计 pandas 以前的版本(1.1以前)中,就已经存在单列的频率统计。...image-20200806092901143 通过参数 normalize 可以转换成占比 但是,以上都是针对单列的统计,很多时候我们希望对多列组合的频率统计。...---- 数据表的多列频率统计 现在,pandas 1.1 版本中已为 DataFrame 追加了同名方法 value_counts,下面来看看怎么使用。...很遗憾,并没有这个参数,应该考虑到组合列的值是不能分段的。
在 MySQL 中,将多行数据转为多列数据一般可以通过使用 PIVOT(也称为旋转表格)操作来实现。但是,MySQL 并没有提供原生的 PIVOT 操作。...; 使用 MAX() 函数筛选出每个分组中的最大值,并命名为对应的课程名称; 将结果按照学生姓名进行聚合返回。...方法二:使用 GROUP_CONCAT 函数 除了第一种方法,也可以使用 GROUP_CONCAT() 函数和 SUBSTRING_INDEX() 函数快速将多行数据转为多列数据。...score 合并成一个字符串; 使用 SUBSTRING_INDEX() 函数截取合并后的字符串中需要的值,并进行命名; 将结果按照学生姓名进行聚合返回。...总结 以上两种实现方法都能够将 MySQL 中的多行数据转为多列数据。
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...方法将行追加到数据帧。...然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...ignore_index参数设置为 True 以在追加行后重置数据帧的索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。
> 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 是奇葩不规范数据的重灾区,这主要是因为他有高度的灵活性,今天来看看一个多列堆叠问题。...现在来看看,在 pandas 中怎么简单转换成规范的2列数据: - 第一句主要是为了最后结果的标题与原数据标题一致而已 - 关键是第二句,这里直接使用 numpy 的 reshape 方法,即可完成需求...- .reshape(-1,2) ,其中的2就是2列,而 -1 是让 numpy 你根据数据来计算最终的行数 - 第三句,只是把结果的数组变为一个 DataFrame - 至于最后的 dropna ,...用 pandas 不就是为了既可自动化处理,又可以少写点代码吗 总结 - numpy 的 reshape 方法,可以快速把数组转换成指定行数或列数 - 用 -1 可以让 numpy 自动计算行或列的数量
小勤:像这种多项数据堆在一个单元格里的情况,怎么分别拆开做成规范的明细数据啊?...比如拆成下面这个: 大海:这里面显然我们要先对单元格里的内容进行拆分,可以用函数Text.Split函数来完成,比如对“部门”列进行拆分: 对“比例”列进行拆分:...然后,要将分拆后得到的列表一一对应合并成表,可以用函数Table.FromColumns函数,注意要在列表外加上“{}”(想想为什么?)...: 最后,展开数据(按需要删除不必要的列)即可: 当然,上面是将实现过程分拆成3个部分,实际上,合在一起写成一个公式也非常简单,如下所示: 小勤:原来将多个元素一一对应的列合成一个表可以用...小勤:看名字应该是将多行的内容以类似追加的方式合成一个表? 大海:动手试试?
这个问题来自一位网友,原因是需要对一个表里很多个列的数据全部乘以一个系数: 在Power Query里,对于一列的数据乘以一个系数,操作比较简单,直接在转换里有“乘”的功能...: 但是,当需要同时转换很多列的时候,这个功能是不可用的: 那么,如果要转换的列数很多,怎么操作最方便呢?...正如前面提到的,我们可以先对需要转换的数据进行逆透视: 这样,需要转换的数据即为1列,可以用前面提到的“乘”转换功能: 转换好后,再进行透视即可: 很多问题
如果我们想要将相同的函数应用于Pandas数据帧中整个列的值,我们可以简单地使用 .apply()。Pandas数据帧和Pandas系列(数据帧中的一列)都可以与 .apply() 一起使用。...将函数应用于单个列 例如,这是我们的示例数据集。...将函数应用于多列 有时我们需要使用数据中的多列作为函数的输入。例如,我们想要创建一列列表来记录“radius_or_3”和“diameter”之间可能的大小。...如果你想要对Pandas数据帧中的多个列使用 .apply(),请尽量避免使用 .apply(,axis=1) 格式。...编写一个独立的函数,可以将NumPy数组作为输入,并直接在Pandas Series(数据帧的列)的 .values 上使用它。 为了方便起见,这是本文中的全部Jupyter笔记本代码。
正如CAN的高层协议J1939标准所规定,传输协议功能是数据链路层的一部分,主要完成消息的拆装和重组以及连接管理,稍微了解一点CAN通信的童鞋应该知道,长度大于8字节的消息无法使用单个CAN数据帧来传输...,因此必须被拆为很多个小的数据包,然后根据标准使用单个的数据帧对这个长消息进行多帧传输,这就要求接收方必须能够接收这些单个的数据帧,然后在重组成原始的消息,说白了就是拆包和打包。...标准定义数据域的第一个字节作为多包消息的编号,例如,1,2,3......最大的数据长度为255 * 7 = 1785字节,也就是说J1939的多帧最多可以传送1785个字节。...还有一点就是在多帧消息中,例如你有24个字节需要通过多帧传送,那么被拆分为4个包,而最后一个包未使用的字节需要填充0xff。...void j1939tp_update_rx_rtscts( uint8_t index ),涉及标准的内容很多,不能给大家一一列举,如果你想深入理解J1939的应用和开发一定好好看标准。
这就可能导致一个完整的应用层数据包被TCP拆分为多个小包进行发送,或者将多个小包封装成一个大的数据包进行发送。...首先,一个最简单的协议包含两部份,比如用4字节的帧头来保存协议体的大小,这样接收端首先读取帧头的里面的值,接着再根据值的大小来读取协议体的数据。...然而接收端接收到协议体是一串二进制数据,需知道序列化编码方式。因此在帧头增加1字节来保存当前数据的序列化编码方式。接下来在帧头增加1字节,用来保存当前数据类型。比如请求、响应、单向调用、流式调用等。...请求头和请求体都属于不固定长度的数据,这些数据无法放到帧头中。因为帧头是固定长度,一旦对帧头增加新的功能,将会导致协议解析失败引发线上故障。...第四部分用于保存当前RPC发送的数据,称为包体。将协议体拆分成包头和包体以后,需在帧头再增加2字节来保存包头的长度,这样接收端可根据协议体总长度和包头长度来合理读取包头和包体数据。
Pandas 没有将数据大致分为连续数据或分类数据。 相反,它对许多不同的数据类型都有精确的技术定义。...二、数据帧基本操作 在本章中,我们将介绍以下主题: 选择数据帧的多个列 用方法选择列 明智地排序列名称 处理整个数据帧 将数据帧方法链接在一起 将运算符与数据帧一起使用 比较缺失值 转换数据帧操作的方向...准备 以下是排序列的简单指南: 将每列分为离散列或连续列 在离散列和连续列中将公共列分组 将最重要的列组首先放置在分类列之前,然后再放置连续列 本秘籍向您展示如何使用此指南排序各列。.../img/00036.jpeg)] 准备 我们的大学数据集将种族分为九个不同类别。...同时选择数据帧的行和列 直接使用索引运算符是从数据帧中选择一列或多列的正确方法。 但是,它不允许您同时选择行和列。
多列选择 要从一个数据帧中选择多个列,我们需要将这些列作为列表传递给数据帧,如下所示: region_n_state = data[['RegionName', 'State']] region_n_state.head...-ac7f-4a4f-966c-044360cdaf8e.png)] 选择单行和多列 在本节中,我们将查看单行和多列的记录,其中我们将多列作为列表传递: zillow.loc[7, ['Metro',...将数据分为几组后,我们可以使用 Pandas 方法来获取有关这些组的一些有趣信息。...从 Pandas 数据帧中删除列 在本节中,我们将研究如何从 Pandas 的数据集中删除列或行。 我们将详细了解drop()方法及其参数的功能。...接下来,我们了解如何将函数应用于多个列或整个数据帧中的值。 我们可以使用applymap()方法。 它以类似于apply()方法的方式工作,但是在多列或整个数据帧上。
]) 选择仅具有数字特征的子数据帧。...df[ c ].value_counts().reset_index() #如果你想将stats表转换成pandas数据帧并进行操作。...Percentile groups 你有一个数字列,并希望将该列中的值分类为组,例如将列的前5%,分为组1,前5-20%分为组2,前20%-50%分为组3,最后50%分为组4。...如果列同时包含缺失值和整数,则数据类型仍将是float而不是int。导出表时,可以添加float_format = %。0f 将所有浮点数舍入为整数。...如果只想要所有列的整数输出,请使用此技巧,你将摆脱所有令人苦恼的 .0 。
Pandas的一个惊人之处是,它可以很好地处理来自各种来源的数据,比如:Excel表格、CSV文件、SQL文件,甚至是网页。 在本文中,我将向您展示一些关于Pandas中使用的技巧。...它将分为以下几点: 1、在Pandas数据流中生成数据。 2、数据帧内的数据检索/操作。...生成包含随机条目的pandas数据aframe: testdf= myDB.gen_dataframe(5,[‘name’,’city’,’phone’,’date’]) } 这将导致数据帧如下所示:...2 数据帧操作 在本节中,我将展示一些关于Pandas数据帧的常见问题的提示。 注意:有些方法不直接修改数据帧,而是返回所需的数据帧。...所以这里我们有两列,分别称为“标签”和“难度”。我想将“MCQ”用于任何空的“tags”值,将“N”用于任何空的“difficulty”值。
']) 选择仅具有数字特征的子数据帧。...C. df['c'].value_counts().reset_index(): 如果你想将stats表转换成pandas数据帧并进行操作。 4....Percentile groups 你有一个数字列,并希望将该列中的值分类为组,例如将列的前5%,分为组1,前5-20%分为组2,前20%-50%分为组3,最后50%分为组4。...如果列同时包含缺失值和整数,则数据类型仍将是float而不是int。导出表时,可以添加float_format ='%。0f'将所有浮点数舍入为整数。...如果只想要所有列的整数输出,请使用此技巧,你将摆脱所有令人苦恼的'.0'。
H.264压缩方法如下: 分组:把几帧图像分为一组(GOP,也就是一个序列),为防止运动变化,帧数不宜取多; 定义帧:将每组内各帧图像定义为三种类型,即I帧、B帧和P帧; 预测帧:以I帧做为基础帧,以I...帧预测P帧,再由I帧和P帧预测B帧; 数据传输:最后将I帧数据与预测的差值信息进行存储和传输。...基于块的运动补偿考虑到视频序列中构成新帧的大量信息都可以在前面的帧中找到,但可能会在不同的位置上。所以,这种技术将一个帧分为一系列的宏块。...,将较大的NALU拆分为FU-A包。...这里面有拆包和解包两个概念: 拆包:当编码器在编码时需要将原有一个NAL按照FU-A进行分片,原有的NAL的单元头与分片后的FU-A的单元头有如下关系: 原始的NAL头的前三位为FU indicator