= "price"] Y = dataset[:,dataset.columns == "price"] 船舶航迹预测 特点:回归问题,解释变量为 lat lon from pandas import...read_csv dataset =read_csv('train.csv') # mmsi lat lon Sog Cog timestamp #dataset.iloc[行,列] #这里指 [...True,False,False,True,True,True]] Y = dataset.iloc[:, [False,True,True,False,False,False]] #Tip: #这里的列...,根据bool/条件语句/整数去选择列都可以,比如 X = dataset.iloc[:, dataset.columns !...= "lon"] #原因如下 上面提到的双条件判断出现了[True,False,False,True,True,True]与[False,True,True,False,False,False]判断,出现了多组值的判断
# 将二者相加的话,只要行或列不能对齐,就会产生缺失值。...从不同的DataFrame追加列 # 读取employee数据,选取'DEPARTMENT', 'BASE_SALARY'这两列 In[48]: employee = pd.read_csv('data...employee.set_index('DEPARTMENT') # 现在行索引包含匹配值了,可以向employee的DataFrame新增一列 In[52]: employee['MAX_DEPT_SALARY...# random_salary中是有重复索引的,employee DataFrame的标签要对应random_salary中的多个标签 In[57]: employee['RANDOM_SALARY'...,用eq方法比较DataFrame的每个值和该列的最大值 In[78]: college_n.eq(college_n.max()).head() Out[78]: ?
此外,你可以通过传递参数来调整df.describe()的行为,例如include参数可以设置为'all'来包含所有列的统计信息,或者设置为'O'来仅包含对象列的统计信息。...[ ] : 此函数⽤于基于位置或整数的 Dataframe.ix[] : 此函数⽤于基于标签和整数的 panda set_index()是⼀种将列表、序列或dataframe设置为dataframe...语法: DataFrame.set_index(keys, inplace=False) keys:列标签或列标签/数组列表,需要设置为索引的列 inplace:默认为False,适当修改DataFrame...七、apply() 函数使用方法 如果需要将函数应⽤到DataFrame中的每个数据元素,可以使⽤ apply() 函数以便将函数应⽤于给定dataframe中的每⼀⾏。...DataFrame的索引值保留在附加的DataFrame中,设置ignore_index = True可以避免这种情况。
('mean')累计函数,再将各组结果组合,最后通过行索引转列索引操作将最里层的行索引转换成列索引,形成二维数组。...可以使任何对groupby有效的函数 fill_value 用于替换结果表中的缺失值 dropna 默认为True margins_name 默认为'ALL',当参数margins为True时,ALL行和列的名字...行索引和列索引都可以再设置为多层,不过行索引和列索引在本质上是一样的,大家需要根据实际情况合理布局。...pd.melt() 中使用 id_vars 不需要被转换的列名,在转换后作为标识符列(不是索引列) value_vars 需要被转换的现有列,如果未指明,除 id_vars 之外的其他列都被转换 var_name...使用pandas.DataFrame.rename_axis去除columns列的名称 # 第一步,重置索引 df_wide = df_pivot.reset_index() # 重置name,设置为None
建议读者先对NumPy有一定的熟悉再来学习pandas,我之前也写过一个NumPy的基础教程,参见这里:Python 机器学习库 NumPy 教程 核心数据结构 pandas最核心的就是Series和DataFrame...请注意: Index并非集合,因此其中可以包含重复的数据 Index对象的值是不可以改变,因此可以通过它安全的访问数据 DataFrame提供了下面两个操作符来访问其中的数据: loc:通过行和列的索引来访问数据...第一行代码访问了行索引为0和1,列索引为“note”的元素。第二行代码访问了行下标为0和1(对于df3来说,行索引和行下标刚好是一样的,所以这里都是0和1,但它们却是不同的含义),列下标为0的元素。...对待无效值,主要有两种处理方法:直接忽略这些无效值;或者将无效值替换成有效值。 下面我先创建一个包含无效值的数据结构。然后通过pandas.isna函数来确认哪些值是无效的: ?...替换无效值 我们也可以通过fillna函数将无效值替换成为有效值。像这样: ? 这段代码输出如下: ? 将无效值全部替换成同样的数据可能意义不大,因此我们可以指定不同的数据来进行填充。
作为额外维度的MultiIndex 你可能会注意到其他内容:我们可以使用带有索引和列标签的简单DataFrame,来轻松存储相同的数据。事实上,Pandas 的构建具有这种等价关系。...MultiIndex的创建方法 为Series或DataFrame构造多重索引的最简单方法,是简单地将两个或多个索引数组的列表传递给构造器。...重排多重索引 处理多重索引数据的关键之一,是知道如何有效地转换数据。有许多操作将保留数据集中的所有信息,但为了各种计算的目的重新排列它。...我们在stack()和unstack()方法中看到了一个简短的例子,但是还有很多方法,可以精确控制分层索引和列之间的数据重排,在这里我们将探索他们。...重排分层数据的另一种方法是将索引标签转换为列;这可以通过reset_index方法完成。
MultiIndex 剖析 MultiIndex 对于没有听说过Pandas的人来说,MultiIndex最直接的用法是使用第二个索引列作为第一个索引列的补充,可以更加独特地识别每一行。...这个方法无法同时过滤行和列,所以名字xs(代表 "cross-section")背后的原因并不完全清楚。它不能用于设置值。...为列增加层次的一个常见方法是将现有的层次从索引中 "unstacking"出来: tack, unstack Pandas的stack与NumPy的stack非常不同。...将多索引DataFrame读入和写入磁盘 Pandas可以以完全自动化的方式将一个带有MultiIndex的DataFrame写入CSV文件:df.to_csv('df.csv')。...一种方法是将所有不相关的列索引层层叠加到行索引中,进行必要的计算,然后再将它们解叠回来(使用pdi.lock来保持原来的列顺序)。
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...ignore_index 参数用于在追加行后重置数据帧的索引。concat 方法的第一个参数是要与列名连接的数据帧列表。 ignore_index 参数用于在追加行后重置数据帧的索引。...然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...ignore_index参数设置为 True 以在追加行后重置数据帧的索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。...然后,我们在数据帧后附加了 2 列 [“罢工率”、“平均值”]。 “罢工率”列的列值作为系列传递。“平均值”列的列值作为列表传递。列表的索引是列表的默认索引。
bfill表示用所在索引1206的后一个有效行填充,ffill为前一个有效行。...使用表内列作为索引: df.head() 将df的列设置为索引, 参数 drop 默认丢弃原来的索引。...的时候, 就会把列名和list一致的列设置为索引 看参数说明,并不一定需要Series df.set_index(np.arange(df.shape[0])).head() 可以直接添加多级索引:...(np.random.rand(9,9),index=mul_index1,columns=mul_index2) 将编号为1的行索引(也就是次级索引)重置为列, 原来的次级索引名作为列索引的编号为0(...,还能选择其他的非分组列。
Time- Series:以时间为索引的Series。 DataFrame:二维的表格型数据结构。很多功能与R中的data.frame类似。可以将DataFrame理解为Series的容器。...创建DataFrame有多种方式: 以字典的字典或Series的字典的结构构建DataFrame,这时候的最外面字典对应的是DataFrame的列,内嵌的字典及Series则是其中每个值。...将DataFrame写入Excel文件: df.to_excel('foo.xlsx', sheet_name='sheet1') 默认的sheet为sheet1,也可以指定其他sheet名。...DataFrame的每一列,这里使用的是匿名lambda函数,与R中apply函数类似 设置索引 df.set_index('one') 重命名列 df.rename(columns={u'one':'...,以C为列标签将D列的值汇总求和pd.crosstab(rows = ['A', 'B'], cols = ['C'], values = 'D')#以A、B为行标签,以C为列标签将D列的值汇总求和
如果要计算相应用户所占的比例,可以将value_counts函数中的normalize参数设置为True即可: df[‘Churn’'].value_counts(normalize=True) 0...我们会假定“索引得到前三列中前五行的值,这种索引方式和Python切片方式是一样的,不会包含索引的最大值对应的项,代码如下: df.iloc[0:5, 0:3] 如果想索引DataFrame数据中的第一行和最后一行...首先,groupby()方法将以grouping_columns的值来划分数据,得到的结果将作为DataFrame新的索引。 2. 然后,选择感兴趣的列columns_to_show。...此外,inplace参数将决定是否更改原始的DataFrame数据:使用inplace = False时,drop方法不会更改现有DataFrame数据结构,并返回删除行或列后的新数据框。...而在我们的课程中,通过机器学习的方法我们可以对数据进行非常简单有效的分析,下面让我们回顾一下以上课程所涵盖的内容: 样本中忠诚客户所占的比例为85.5%,换句话说,我们所构建的最简单的模型总是预测“忠实客户
inplace参数设置为True以保存更改。我们删除了4列,因此列数从14减少到10。 2.读取时选择特定的列 我们只打算读取csv文件中的某些列。读取时,列列表将传递给usecols参数。...如果我们将groupby函数的as_index参数设置为False,则组名将不会用作索引。 16.带删除的重置索引 在某些情况下,我们需要重置索引并同时删除原始索引。...17.设置特定的列作为索引 我们可以将DataFrame中的任何列设置为索引。 df_new.set_index('Geography') ?...考虑上一步(df_new)中的DataFrame。我们希望将小于6的客户的Balance设置为0。...符合指定条件的值将保持不变,而其他值将替换为指定值。 20.排名函数 它为这些值分配一个等级。让我们创建一个根据客户余额对客户进行排名的列。
将数据源重组为DataFrame数据结构后,可以利用Pandas提供的多种分析方法和工具完成数据处理和分析任务。...第一列是数据的索引,第二列是数据 2.1Pandas数据结构之Series 当Series数组元素为数值时,可以使用Series对象的describe方法对Series数组的数值进行分析 2.2 Pandas...调用DataFrame对象的info方法,可以获得其信息概述,包括行索引,列索引,非空数据个数和数据类型信息。...0) 默认列方向各列的最大/最小值,当axis的值设置为1时,获得各行的最大/最小值 mean(axis = 0) / median( axis = 0) 默认获得列方向各列的平均/中位数,当axis...的值设置为1时,获得各行的平均值/中位数 info() 对所有数据进行简述 isnull() 检测空值,返回一个元素类型为布尔值的DataFrame,当出现空值时返回True,否则返回False dropna
inner 内连 取行索引的交集 outer 外连 取行索引的并集 left 左连 使用左边df的行索引 right 右连 使用右边df的行索引 三设置用于连接的列 ---- ?...on参数指定连接列时,只能指定调用join()方法的DataFrame,而传入join()方法的DataFrame还是用行索引进行连接。...on参数指定多个列作为连接列时,这些列都要在调用join()方法的DataFrame中,此时,传入join()方法的DataFrame必须为多重行索引(MultiIndex),且与on指定的列数相等,否则会报错...lsuffix和rsuffix默认为空字符串,合并两个DataFrame时,join()方法不会自动给相同的列名加后缀进行区分,如果不给相同的列设置后缀会报错。...合并多个DataFrame时,只支持用DataFrame的行索引进行连接,不能使用on参数。默认使用的是左连接,可以设置成其他的连接方式。
i gnore_index:如果设置为True,清除现有索引并重置索引值。 names:结果分层索引中的层级的名称。 ...数据重塑 3.1 重塑层次化索引 Pandas中重塑层次化索引的操作主要是 stack()方法和 unstack()方法,前者是将数据的列“旋转”为行,后者是将数据的行“旋转”为列。 ...3.1.1 stack()方法 stack()方法可以将数据的列索引转换为行索引。 level:默认为-1,表示操作内层索引。若设为0,表示操作外层索引。 ...dropna:表示是否将旋转后的缺失值删除,若设为True,则表示自动过滤缺失值,设置为 False则相反。 ...3.1.2 unstack()方法 unstack()方法可以将数据的行索引转换为列索引 level:默认为-1,表示操作内层索引,0表示操作外层索引。
它擅长处理一维带标签的数据,并且具有高效的索引和向量化操作能力。 在单列数据的操作上,Series通常比DataFrame更高效,因为它是为单列数据设计的。...它是一个二维表格结构,可以包含多列数据,并且每列可以有不同的数据类型。 DataFrame提供了灵活的索引、列操作以及多维数据组织能力,适合处理复杂的表格数据。...通过以上步骤和方法,可以有效地对数据进行清洗和预处理,从而提高数据分析的准确性和效率。 Pandas时间序列处理的高级技巧有哪些?...Pandas中的rolling方法可以轻松实现移动平均,并且可以通过设置不同的参数来调整窗口大小和权重。...它不仅支持浮点与非浮点数据里的缺失数据表示为NaN,还允许插入或删除DataFrame等多维对象的列。
每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...初始DataFrame中将成为索引的列,并且这些列显示为唯一值,而这两列的组合将显示为值。这意味着Pivot无法处理重复的值。 ? 旋转名为df 的DataFrame的代码 如下: ?...作为另一个示例,当级别设置为0(第一个索引级别)时,其中的值将成为列,而随后的索引级别(第二个索引级别)将成为转换后的DataFrame的索引。 ?...尽管可以通过将axis参数设置为1来使用concat进行列式联接,但是使用联接 会更容易。 请注意,concat是pandas函数,而不是DataFrame之一。...串联是将附加元素附加到现有主体上,而不是添加新信息(就像逐列联接一样)。由于每个索引/行都是一个单独的项目,因此串联将其他项目添加到DataFrame中,这可以看作是行的列表。
,仅支持一维和二维数据,但数据内部可以是异构数据,仅要求同列数据类型一致即可 numpy的数据结构仅支持数字索引,而pandas数据结构则同时支持数字索引和标签索引 从功能定位上看: numpy虽然也支持字符串等其他数据类型...前者是将已有的一列信息设置为标签列,而后者是将原标签列归为数据,并重置为默认数字标签 set_axis,设置标签列,一次只能设置一列信息,与rename功能相近,但接收参数为一个序列更改全部标签列信息(...切片类型与索引列类型不一致时,引发报错 loc/iloc,最为常用的两种数据访问方法,其中loc按标签值访问、iloc按数字索引访问,均支持单值访问或切片查询。...isin/notin,条件范围查询,即根据特定列值是否存在于指定列表返回相应的结果 where,仍然是执行条件查询,但会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值...;sort_values是按值排序,如果是dataframe对象,也可通过axis参数设置排序方向是行还是列,同时根据by参数传入指定的行或者列,可传入多行或多列并分别设置升序降序参数,非常灵活。
如果 index 不包含重要信息 (如上例),可以将 ignore_index 设置为 True,这样就得到默认的 index 值了。...在 Pandas 里透视的方法有两种: 用 pivot 函数将「一张长表」变「多张宽表」, 用 melt 函数将「多张宽表」变「一张长表」, 本节使用的数据描述如下: 5 只股票:AAPL, JD,...在 pivot 函数中 将 index 设置成 ‘Date’ 将 columns 设置成 ‘Symbol’ 将 values 设置 ‘Adj Close’ close_price 实际上把 data[‘...在获取任意信息就用 DataFrame 的索引或切片那一套方法。...【重塑数据表】用 stack 函数将「列索引」变成「行索引」,用 unstack 函数将「行索引」变成「列索引」。它们只是改变数据表的布局和展示方式而已。
header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引,默认为0,即第一行数据作为列索引。...header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引。 names:表示DataFrame类对象的列索引列表。...’或’bfill’表示将最后一个有效值向前传播,也就是说使用缺失值后面的有效值填充缺失值。...DataFrame.duplicated(subset=None, keep='first') subset:表示识别重复项的列索引或列索引序列,默认标识所有的列索引。...join 最简单,主要用于基于索引的横向合并拼接 merge 最常用,主要用于基于指定列的横向合并拼接 concat最强大,可用于横向和纵向合并拼接 append,主要用于纵向追加 3.3 数据变换
领取专属 10元无门槛券
手把手带您无忧上云