首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Groovy】Xml 反序列化 ( 使用 XmlParser 解析 Xml 文件 | 删除 Xml 文件中的节点 | 增加 Xml 文件中的节点 | 将修改后的 Xml 数据输出到文件中 )

文章目录 一、删除 Xml 文件中的节点 二、增加 Xml 文件中的节点 三、将修改后的 Xml 数据输出到文件中 四、完整代码示例 一、删除 Xml 文件中的节点 ---- 在 【Groovy】Xml...反序列化 ( 使用 XmlParser 解析 Xml 文件 | 获取 Xml 文件中的节点和属性 | 获取 Xml 文件中的节点属性 ) 博客基础上 , 删除 Xml 文件中的节点信息 ; 下面是要解析的...文件中的节点 ---- 增加 Xml 文件中的节点 , 调用 appendNode 方法 , 可以向节点插入一个子节点 ; // 添加节点 xmlParser.appendNode("height",..."175cm") 三、将修改后的 Xml 数据输出到文件中 ---- 创建 XmlNodePrinter 对象 , 并调用该对象的 print 方法 , 传入 XmlParser 对象 , 可以将该...XmlParser 数据信息写出到文件中 ; // 将修改后的 Xml 节点输出到目录中 new XmlNodePrinter(new PrintWriter(new File("b.xml"))).print

6.2K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    macOS下利用dSYM文件将crash文件中的内存地址转换为可读符号

    一、使用流程     Windows下的程序运行崩溃时,往往可以利用pdb文件快速解析出程序崩溃的具体位置,甚至可以对应到源代码的具体行数。...macOS下的symbolicatecrash也具备相应的功能。对应于Windows下的pdb文件,macOS下的crash文件解析需要用到dSYM文件。...当程序崩溃时,通过symbolicatecrash对crash文件和dSYM文件中的符号进行映射,即可将crash文件中的内存地址转换为可读的字符串。以前的博文中也进行过总结,但是并没有具体实践。...这里我的程序在内存中的加载位置为0x10c680000(尖括号中的字符串是程序的UUID)。再次找到我们感兴趣的内存地址,如下: ?      再次运行命令: ?    ...至此即可分析出特定地址的符号了,调试的时候也可以确定大致的位置了。至于为什么不能全文解析crash文件暂时还不清楚。

    2.6K100

    python-使用pygrib将已有的GRIB1文件中的数据替换为自己创建的数据

    前言 希望修改grib中的变量,用作WRF中WPS前处理的初始场 python对grib文件处理的packages python中对于grib文件的处理方式主要有以下两种库: 1、pygrib 2、xarray...将数据写入新的grib文件!有用!...问题解决:将滤波后的数据替换原始grib中的数据再重新写为新的grib文件 pygrib写grib文件的优势在于,写出的grib文件,基本上会保留原始grib文件中的信息,基本的Attributes等也不需要自己编辑...,会直接将原始文件中的信息写入 替换的大致思路如下: replace_data = np.array(data) #你想替换的数据 with pygrib.open(grbfile) as grbs...'.grib','wb') for i in range(len(sel_u_850)): print(i) sel_u_850[i].values = band_u[i] #将原始文件中的纬向风数据替换为滤波后的数据

    98410

    资源 | 23种Pandas核心操作,你需要过一遍吗?

    pd.read_excel("excel_file") (3)将 DataFrame 直接写入 CSV 文件 如下采用逗号作为分隔符,且不带索引: df.to_csv("data.csv", sep...a table 将 DataFrame 输出到一张表: print(tabulate(print_table, headers=headers)) 当「print_table」是一个列表,其中列表元素还是新的列表...,选择 how=「all」会删除所有元素都是 NaN 的给定轴。...(12)将目标类型转换为浮点型 pd.to_numeric(df["feature_name"], errors='coerce') 将目标类型转化为数值从而进一步执行计算,在这个案例中为字符串。...(13)将 DataFrame 转换为 NumPy 数组 df.as_matrix() (14)取 DataFrame 的前面「n」行 df.head(n) (15)通过特征名取数据 df.loc[feature_name

    2.9K20

    干货:手把手教你用Python读写CSV、JSON、Excel及解析HTML

    将数据存于pandas DataFrame对象意味着,数据的原始格式并不重要;一旦读入,它就能保存成pandas支持的任何格式。在前面这个例子中,我们就将CSV文件中读取的内容写入了TSV文件。...to_csv(…)方法将DataFrame的内容转换为可存储于文本文件的格式。你要指定分隔符,比如sep=‘,’,以及是否保存DataFrame的索引,默认是保存的。...这里对文件使用了.read()方法,将文件内容全部读入内存。下面的代码将数据存储于一个JSON文件: # 写回到文件中 with open('../.....字典中每个元素的键名对应XML中元素的var_name属性。(有这样的格式:。)...指定为1,我们让.applay(...)方法将指定的xml_encode(...)方法应用到DataFrame的每一行上。

    8.4K20

    使用 Spark | 手把手带你十步轻松拿下 Spark SQL 使用操作

    DataFrame/DataSet 转 RDD 这个转换比较简单,直接调用 rdd 即可将 DataFrame/DataSet 转换为 RDD: val rdd1 = testDF.rdd val rdd2...DataSet 转 DataFrame 直接调用 toDF,即可将 DataSet 转换为 DataFrame: val peopleDF4 = peopleDS.toDF peopleDF4.show...4.4 读取数据源,加载数据(RDD 转 DataFrame) 读取上传到 HDFS 中的广州二手房信息数据文件,分隔符为逗号,将数据加载到上面定义的 Schema 中,并转换为 DataFrame 数据集...展示加载的数据集结果 由于数据加载到 Schema 中为 RDD 数据集,需要用 toDF 转换为 DataFrame 数据集,以使用 Spark SQL 进行查询。...4.10 使用 SQL 风格进行连接查询 读取上传到 HDFS 中的户型信息数据文件,分隔符为逗号,将数据加载到定义的 Schema 中,并转换为 DataSet 数据集: case class Huxing

    8.8K51

    Numpy和pandas的使用技巧

    '' '''2、np.cumsum()返回一个数组,将像sum()这样的每个元素相加,放到相应位置''' '''NumPy数组实际上被称为ndarray NumPy最重要的一个特点是N维数组对象...,相当于shape中n*m的值,改变原序列 ndarray.itemsize,数组每个元素大小,以字节为单位 ndarray.dtype 数组元素类型 ndarray.nbytes...△ np.r_[] 按行上下连接两个矩阵 6、NumPy 数组操作 △ n.reshape(arr,newshape,order=)数组,新形状,"C"-按行、"F"-按列、"A"-原顺序、"k"-元素在内存中痴线顺序...△ n.transpose()对换数组的维度,矩阵的转置 △ ndarray.T 与上类似,用于矩阵的转置 △ n.concatenate((a1, a2, ...), axis)沿指定轴连接同形数组...,Ctrl+Enter #运行当前代码块并选中下一个代码块(没有就创建),Shift+Enter 清除缓存kernel -> restart Jupyter的优点是允许将变量放到内存中,可以直接进行类型推断

    3.5K30

    JSON端口操作实例

    该端口较多的是运用在API接口调用集成方案的项目当中,我们以百思买项目为例,知行之桥将接收到的百思买的EDI报文首先映射为XML格式文件,最后再通过JSON端口转换为Json;用户给百思买发送数据时,也会将...(1)当XML转Json时,该设置判断是否保留根元素,可进行两种配置:一种是使用默认设置Items,Json端口会将输入XML中的根元素保留下来,并且将其作为转出Json的根节点,此时,左图的输入XML...比如,当自定义设置为PO时,如下图所示,输出XML的根元素为PO:二、设置单个数组节点也带有数组符号XML转JSON时,若只有一行明细,此时JSON端口转出的Json文件中,单行明细以JSON对象输出,...具体的设置是这样的,以此工作流为例,在JSON端口前一般都连有XML MAP端口,该端口进行的操作是将指定格式的XML文件,映射为符合用户具体需求的XML文件。...这样转出的XML文件的明细元素就是包含属性json:array=true,再经过JSON端口转换出的JSON文件中也带有[]了。

    1.6K30

    如何使用EDI系统实现CSV和XML相互转化

    在知行EDI系统中将XML转换为CSV的工作流如下图所示: 1.以X12标准的830报文为例,将830报文转换成的标准XML,将其传入XML Map 端口,并在此步进行标准XML到特定XML的映射。...如果您对EDI系统生成的CSV文件格式有任何特殊要求,欢迎联系我们,知行EDI顾问们将根据您的需求定制模板。 2.将特定格式的XML传入CSV端口,转换为CSV文件。...您可以在连接设置中自定义生成的CSV文件名。在本地文件夹中,您可以选择输入输出以及待处理的文件夹位置。将收发的文件放在特殊位置,有利于统一管理。...CSV 转XML 以上我们了解了XML转CSV,同理可知CSV转XML这一逆向过程为: 收到来自交易伙伴的CSV文件后,应该进行怎样的处理,才能使CSV文件转换成为我们需要的XML格式呢?...CSV端口可以将输入的CSV文件转换为标准的XML文件,而XMLMap 则负责将标准XML转换为处理所需的XML文件。

    3.6K20

    Spark SQL,DataFrame以及 Datasets 编程指南 - For 2.0

    DataFrame API 可在 Scala、Java、Python 和 R 中使用。在 Scala 和 Java 中,DataFrame 由一个元素为 Row 的 Dataset 表示。...在本文剩余篇幅中,会经常使用 DataFrame 来代指 Scala/Java 元素为 Row 的 Dataset。...使用反射来推断模式 Spark SQL 的 Scala 接口支持将元素类型为 case class 的 RDD 自动转为 DataFrame。case class 定义了表的模式。...),那么可以通过以下三步来创建 DataFrame: 将原始 RDD 转换为 Row RDD 根据步骤1中的 Row 的结构创建对应的 StructType 模式 通过 SparkSession 提供的...配置上需要做的是将 hive-site.xml, core-site.xml (如果有安全相关配置) 以及 hdfs-site.xml拷贝到 $SPARK_HOME/conf 目录下。

    4K20

    pandas

    ) # 将日流量写入‘逐日流量’,将位置写入‘格网中的经纬度’ writer = pd.ExcelWriter() df.to_excel(writer,...原因: writer.save()接口已经私有化,close()里面有save()会自动调用,将writer.save()替换为writer.close()即可 更细致的操作: 可以添加更多的参数,比如...列中的日期转换为没有时分秒的日期 df.to_excel("dates.xlsx") 向pandas中插入数据 如果想忽略行索引插入,又不想缺失数据与添加NaN值,建议使用 df['column_name..._append(temp, ignore_index=True) pandas数据转置 与矩阵相同,在 Pandas 中,我们可以使用 .transpose() 方法或 .T 属性来转置 我们的DataFrame...通常情况下, 因为.T的简便性, 更常使用.T属性来进行转置 注意 转置不会影响原来的数据,所以如果想保存转置后的数据,请将值赋给一个变量再保存。

    13010

    Python处理CSV、JSON和XML数据的简便方法

    在日常使用中,CSV,JSON和XML三种数据格式占据主导地位。下面我将针对三种数据格式来分享其快速处理的方法。 CSV数据 CSV是存储数据的最常用方法。...在单个列表中设置字段名称,并在列表列表中设置数据。这次我们将创建一个writer()对象并使用它将我们的数据写入文件,与读取时的方法基本一样。...将数据格式化为字典列表后,我们将使用该dicttoxml库将其转换为XML格式。我们还将其保存为JSON文件!...要读入XML数据,我们将使用Python的内置XML模块和子模ElementTree。我们可以使用xmltodict库将ElementTree对象转换为字典。...一旦我们有了字典,我们就可以转换为CSV,JSON或Pandas Dataframe!

    3.3K20
    领券