首页
学习
活动
专区
圈层
工具
发布

在Python如何将 JSON 转换为 Pandas DataFrame?

将JSON数据转换为Pandas DataFrame可以方便地进行数据分析和处理。在本文中,我们将探讨如何将JSON转换为Pandas DataFrame,并介绍相关的步骤和案例。...将JSON数据转换为DataFrame:df = pd.DataFrame(data)在上述代码中,df是转换后的Pandas DataFrame对象,其中包含从API获取的JSON数据。...JSON 数据清洗和转换在将JSON数据转换为DataFrame之后,我们可能需要进行一些数据清洗和转换的操作。这包括处理缺失值、数据类型转换和重命名列等。...结论在本文中,我们讨论了如何将JSON转换为Pandas DataFrame。...我们还探讨了如何解析嵌套的JSON数据,并提供了一个从公开API获取JSON数据并转换为DataFrame的案例。最后,我们提供了一些常见的JSON数据清洗和转换操作。

3.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark Structured Streaming 使用总结

    具体而言需要可以执行以下操作: 过滤,转换和清理数据 转化为更高效的存储格式,如JSON(易于阅读)转换为Parquet(查询高效) 数据按重要列来分区(更高效查询) 传统上,ETL定期执行批处理任务...例如实时转储原始数据,然后每隔几小时将其转换为结构化表格,以实现高效查询,但高延迟非常高。在许多情况下这种延迟是不可接受的。...幸运的是,Structured Streaming 可轻松将这些定期批处理任务转换为实时数据。此外,该引擎提供保证与定期批处理作业相同的容错和数据一致性,同时提供更低的端到端延迟。...: 星号(*)可用于包含嵌套结构中的所有列。...我们在这里做的是将流式DataFrame目标加入静态DataFrame位置: locationDF = spark.table("device_locations").select("device_id

    9.6K61

    图解大数据 | 综合案例-使用Spark分析挖掘零售交易数据

    得到的countryCustomerDF为DataFrame 类型,执行 collect() 方法即可将结果以数组的格式返回。...,格式如下: [商品编号,销量] (5)商品描述的热门关键词Top300 Description字段表示商品描述,由若干个单词组成,使用 LOWER(Description) 将单词统一转换为小写。...调用 createDataFrame() 方法将其转换为 DataFrame 类型的 wordCountDF,将word为空字符串的记录剔除掉,调用 take() 方法得到出现次数最多的300个关键 词...调用 createDataFrame() 方法将其转换为DataFrame类型的 tradePriceDF ,调用 collect() 方法将结果以数组的格式返回。...调用createDataFrame()方法将其转换为DataFrame类型的saleQuantityDF,调用collect() 方法将结果以数组的格式返回。

    4K21

    使用 Spark | 手把手带你十步轻松拿下 Spark SQL 使用操作

    读取文件数据源 Spark SQL 支持的文件类型包括:parquet、text、csv、json、orc 等。...DataFrame/DataSet 转 RDD 这个转换比较简单,直接调用 rdd 即可将 DataFrame/DataSet 转换为 RDD: val rdd1 = testDF.rdd val rdd2...DataSet 转 DataFrame 直接调用 toDF,即可将 DataSet 转换为 DataFrame: val peopleDF4 = peopleDS.toDF peopleDF4.show...4.4 读取数据源,加载数据(RDD 转 DataFrame) 读取上传到 HDFS 中的广州二手房信息数据文件,分隔符为逗号,将数据加载到上面定义的 Schema 中,并转换为 DataFrame 数据集...4.8 DataFrame 转 DataSet 将 DataFrame 数据集 houseDF 转换成 DataSet 数据集 houseDS: val houseDS = houseDF.as[House

    9.9K51
    领券