首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Note_Spark_Day08:Spark SQL(Dataset是什么、外部数据源、UDF定义和分布式SQL引擎)

此外RDD与Dataset相比较而言,由于Dataset数据使用特殊编码,所以在存储数据时更加节省内存。...由于Dataset数据结构,是一个强类型分布式集合,并且采用特殊方式对数据进行编码,所以与DataFrame相比,编译时发现语法错误和分析错误,以及缓存数据时比RDD更加节省空间。...; 由于保存DataFrame时,需要合理设置保存模式,使得将数据保存数据库时,存在一定问题的。...CSV 格式数据文本文件数据 -> 依据 CSV文件首行是否是列名称,决定读取数据方式不一样的 /* CSV 格式数据: 每行数据各个字段使用逗号隔开 也可以指的是,每行数据各个字段使用...单一 分割符 隔开数据 */ // 方式一:首行是列名称,数据文件u.dat val dataframe: DataFrame = spark.read .format("csv"

4K40

导师嫌我Sql写的太low?要求我重写还加了三个需求?——二战Spark电影评分数据分析

文章目录 引言 数据介绍:使用的文件movies.csv和ratings.csv 建表语句 项目结构一览图 由题意可知 总结 引言 大家好,我是ChinaManor,直译过来就是中国码农的意思,俺希望自己能成为国家复兴道路的铺路人...movies.csv和ratings.csv movies.csv该文件是电影数据,对应的为维表数据,其数据格式为 movieId title genres 电影id 电影名称 电影所属分类 样例数据如下所示...文件, // 读取Movie数据集 val movieDF: DataFrame = readCsvIntoDataSet(spark, MOVIES_CSV_FILE_PATH, schemaLoader.getMovieSchema...\\exam0601\\datas\\ratings.csv" /** * 读取数据文件,转成DataFrame * * @param spark * @param...最后保存写入mysql表中 def saveToMysql(reportDF: DataFrame) = { // TODO: 使用SparkSQL提供内置Jdbc数据源保存数据 reportDF

56320
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    面试官嫌我Sql写的太low?要求我重写还加了三个需求?——二战Spark电影评分数据分析

    文章目录 引言 数据介绍:使用的文件movies.csv和ratings.csv 建表语句 项目结构一览图 由题意可知 总结 引言 大家好,我是ChinaManor,直译过来就是中国码农的意思,俺希望自己能成为国家复兴道路的铺路人...movies.csv和ratings.csv movies.csv该文件是电影数据,对应的为维表数据,其数据格式为 movieId title genres 电影id 电影名称 电影所属分类 样例数据如下所示...:逗号分隔 1,Toy Story (1995),Adventure|Animation|Children|Comedy|Fantasy ratings.csv该文件为定影评分数据,其数据格式为 userId...文件, // 读取Movie数据集 val movieDF: DataFrame = readCsvIntoDataSet(spark, MOVIES_CSV_FILE_PATH, schemaLoader.getMovieSchema...\\exam0601\\datas\\ratings.csv" /** * 读取数据文件,转成DataFrame * * @param spark * @param

    49620

    如何管理Spark的分区

    创建好DataFrame之后,我们再来看一下该DataFame的分区,可以看出分区数为4: scala> numsDF.rdd.partitions.size res0: Int = 4 当我们将DataFrame...写入磁盘文件时,再来观察一下文件的个数, scala> numsDF.write.csv("file:///opt/modules/data/numsDF") 可以发现,上述的写入操作会生成4个文件...: Int = 2 将numsDF2写入文件存储,观察文件数量 numsDF2.write.csv("file:///opt/modules/data/numsDF2") 可以发现,上述的写入操作会生成...如何将数据写入到单个文件 通过使用repartition(1)和coalesce(1))可用于将DataFrame写入到单个文件中。...通常情况下,不会只将数据写入到单个文件中,因为这样效率很低,写入速度很慢,在数据量比较大的情况,很可能会出现写入错误的情况。所以,只有当DataFrame很小时,我们才会考虑将其写入到单个文件中。

    2K10

    Note_Spark_Day13:Structured Streaming(内置数据源、自定义Sink(2种方式)和集成Kafka)

    Spark2.0提供新型的流式计算框架,以结构化方式处理流式数据,将流式数据封装到Dataset/DataFrame中 思想: 将流式数据当做一个无界表,流式数据源源不断追加到表中,当表中有数据时...文件数据源(File Source):将目录中写入的文件作为数据流读取,支持的文件格式为:text、csv、json、orc、parquet 可以设置相关可选参数: 演示范例:监听某一个目录...Sink(文件接收器) 将输出存储到目录文件中,支持文件格式:parquet、orc、json、csv等,示例如下: Memory Sink(内存接收器) 输出作为内存表存储在内存中, 支持...{ForeachWriter, Row} /** * 创建类继承ForeachWriter,将数据写入到MySQL表中,泛型为:Row,针对DataFrame操作,每条数据类型就是Row */ class...将DataFrame写入Kafka时,Schema信息中所需的字段: 需要写入哪个topic,可以像上述所示在操作DataFrame 的时候在每条record上加一列topic字段指定,也可以在DataStreamWriter

    2.6K10

    JVM 上数据处理语言的竞争:Kotlin, Scala 和 SPL

    代码比较 以规范的CSV文件为例,比较三种语言的解析代码。...Scala支持多种存储格式,其中parquet文件常用且易用。parquet是开源存储格式,支持列存,可存储大量数据,中间计算结果(DataFrame)可以和parquet文件方便地互转。...也有一些基本的集合运算是Scala不支持的,尤其是与次序相关的,比如归并、二分查找,由于Scala DataFrame沿用了SQL中数据无序的概念,即使自行编码实现此类运算,难度也是非常大的。...应用结构 Java应用集成   Kotlin编译后是字节码,和普通的class文件一样,可以方便地被Java调用。...Kotlin和Scala是编译型语言,编译后必须择时重启应用。 交互式命令行   Kotlin的交互式命令行需要额外下载,使用Kotlinc命令启动。

    2.5K100

    Spark_Day07:Spark SQL(DataFrame是什么和数据分析(案例讲解))

    和Dataset何为一体 Dataset = RDD + schema DataFrame = Dataset[Row] ​ Spark 2.x发布时,将Dataset和DataFrame统一为一套...当RDD中数据类型CaseClass样例类时,通过反射Reflecttion获取属性名称和类型,构建Schema,应用到RDD数据集,将其转换为DataFrame。...,分别保存到MySQL数据库表中及CSV文本文件中。...将分析结果数据保存到外部存储系统中,比如保存到MySQL数据库表中或者CSV文件中 resultDF.persist(StorageLevel.MEMORY_AND_DISK) // 保存结果数据至...文件中 // 数据不在使用时,释放资源 resultDF.unpersist() 18-[掌握]-电影评分数据分析之保存结果至CSV文件 将结果DataFrame保存值CSV文件中

    2.6K50

    Pandas数据导出:CSV文件

    它提供了灵活高效的数据结构,如DataFrame和Series,使得对数据的处理变得简单易行。在实际应用中,我们经常需要将处理后的数据保存为CSV(逗号分隔值)文件,以便后续使用或与其他系统共享。...编码问题当我们的数据中包含中文等非ASCII字符时,在某些操作系统上可能会遇到编码错误。默认情况下,to_csv()使用的是UTF-8编码。...索引列的问题默认情况下,to_csv()会将DataFrame的索引作为第一列写入CSV文件。如果我们不需要这列索引,可以通过设置index=False来避免这种情况。...大文件处理对于非常大的DataFrame,一次性写入磁盘可能会消耗大量内存。此时可以考虑分块写入,即每次只写入一部分数据。...五、总结本文从基础开始介绍了如何使用Pandas将数据导出为CSV文件,并详细探讨了过程中可能遇到的各种问题及其解决方案。无论是初学者还是有一定经验的开发者,都应该能够从中获得有用的信息。

    21410

    pandas.DataFrame.to_csv函数入门

    header:是否将列名保存为CSV文件的第一行,默认为True。index:是否将行索引保存为CSV文件的第一列,默认为True。mode:保存文件的模式,默认为"w"(覆盖写入)。...可以选择"a"(追加写入)。encoding:指定保存CSV文件的编码格式。compression:指定保存CSV文件的压缩方式。默认为'infer',根据文件名自动判断。...chunksize:指定分块写入文件时的行数。date_format:指定保存日期和时间数据的格式。doublequote:指定在引用字符中使用双引号时,是否将双引号作为两个连续的双引号来处理。...下面我将详细介绍一下​​to_csv​​函数的缺点,并且列举出一些类似的函数。缺点:内存消耗:当DataFrame中的数据量非常大时,使用​​to_csv​​函数保存数据可能会占用大量的内存。...因为该函数会将所有的数据一次性写入到CSV文件中,在处理大规模数据时可能会导致内存不足的问题。线程安全性:在多线程环境下,并行地调用​​to_csv​​函数可能会导致线程冲突。

    1.1K30
    领券