首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )

一、RDD#filter 方法 1、RDD#filter 方法简介 RDD#filter 方法 可以 根据 指定的条件 过滤 RDD 对象中的元素 , 并返回一个新的 RDD 对象 ; RDD#filter...传入 filter 方法中的 func 函数参数 , 其函数类型 是 接受一个 任意类型 元素作为参数 , 并返回一个布尔值 , 该布尔值的作用是表示该元素是否应该保留在新的 RDD 中 ; 返回 True...#distinct 方法 1、RDD#distinct 方法简介 RDD#distinct 方法 用于 对 RDD 中的数据进行去重操作 , 并返回一个新的 RDD 对象 ; RDD#distinct...方法 不会修改原来的 RDD 对象 ; 使用时 , 直接调用 RDD 对象的 distinct 方法 , 不需要传入任何参数 ; new_rdd = old_rdd.distinct() 上述代码中 ,...old_rdd 是原始 RDD 对象 , new_rdd 是元素去重后的新的 RDD 对象 ; 2、代码示例 - RDD#distinct 方法示例 代码示例 : """ PySpark 数据处理 "

48410

什么是RDD?带你快速了解Spark中RDD的概念!

3.RDD特点 RDD表示只读的分区的数据集,对RDD进行改动,只能通过RDD的转换操作,由一个RDD得到一个新的RDD,新的RDD包含了从其他RDD衍生所必需的信息。...3.2 只读 如下图所示,RDD是只读的,要想改变RDD中的数据,只能在现有的RDD基础上创建新的RDD。 ?...RDD的操作算子包括两类,一类叫做transformations转化,它是用来将RDD进行转化,构建RDD的血缘关系;另一类叫做actions动作,它是用来触发RDD的计算,得到RDD的相关计算结果或者将...RDD保存的文件系统中。...为此,RDD支持checkpoint将数据保存到持久化的存储中,这样就可以切断之前的血缘关系,因为checkpoint后的RDD不需要知道它的父RDDs了,它可以从checkpoint处拿到数据。

3K52
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    了解Spark中的RDD

    RDD设计背景 RDD被设计用来减少IO出现的,提供了一中抽象的数据结构,不用担心的底层数据的分布式特性。只需将具体的应用逻辑将一些列转换进行处理。不同的RDD之间的转换操作形成依实现管道话。...RDD提供的是一种高度受限的共享内存模型,既RDD是只读的记录分区的集合,不能直接修改,只能给予文档sing的物理存储中的数据来创建RDD,或者是从其他RDD操作上执行转换操作得到新的RDD。...RDD经过一些列操作进行转换(map,filter),形成新的RDD,提供给下一个RDD进行转换使用。 最后经过行动操作,进行处理输入到外部的数据源中或者成为集合内容。 5....简单的说,在这些节点之间会发生大量的数据传输,对于数据密集型应用而言会带来很大的开销。但是由于RDD在设计中数据至刻度,不可更改,这就造成我们必须进行RDD的转换,将父RDD转换成子RDD。...将窄依赖尽量划分到同一阶段中,可以实现流水线的操作。 2. 总结上面的操作流程就是 : 创建RDD对象 SparkContext负责构建RDD之间的依赖关系也就是血缘图。

    73450

    Spark中的RDD介绍

    更加直接点就是我们对某个数据集可能有rddA.map(),rddA.filter()等之类的操作,这种操作并不会改变rddA中的数据,而是生成一个新的RDD,我们在之前写WordCount的时候体现了这点...,我们不断去定义一个新的RDD去接收生成的数据,如图中的情况,我们完全可以不断去使用lines中的数据,因为在做了算子操作的时候是生成新的元素line中的元素并不会去改变。...图五:RDD可以重复被使用的 接下来的是介绍的存储和运行过程,RDD的存储有点像我们的hdfs中的block一样。...我们把图接着画(图十一),假设我们对rdd1进行了一次map操作,那么这个map函数便作用到我们每一个partition中,同时幂等地生成相同数量的partidion,这部分操作返回一个新的rdd2。...图十一:rdd中的function 3.一个依赖其他rdd的依赖列表,这个怎么理解呢。

    58510

    【Python】PySpark 数据输入 ① ( RDD 简介 | RDD 中的数据存储与计算 | Python 容器数据转 RDD 对象 | 文件文件转 RDD 对象 )

    ; 2、RDD 中的数据存储与计算 PySpark 中 处理的 所有的数据 , 数据存储 : PySpark 中的数据都是以 RDD 对象的形式承载的 , 数据都存储在 RDD 对象中 ; 计算方法...: 大数据处理过程中使用的计算方法 , 也都定义在了 RDD 对象中 ; 计算结果 : 使用 RDD 中的计算方法对 RDD 中的数据进行计算处理 , 获得的结果数据也是封装在 RDD 对象中的 ; PySpark...中 , 通过 SparkContext 执行环境入口对象 读取 基础数据到 RDD 对象中 , 调用 RDD 对象中的计算方法 , 对 RDD 对象中的数据进行处理 , 得到新的 RDD 对象 其中有...上一次的计算结果 , 再次对新的 RDD 对象中的数据进行处理 , 执行上述若干次计算 , 会 得到一个最终的 RDD 对象 , 其中就是数据处理结果 , 将其保存到文件中 , 或者写入到数据库中 ;...二、Python 容器数据转 RDD 对象 1、RDD 转换 在 Python 中 , 使用 PySpark 库中的 SparkContext # parallelize 方法 , 可以将 Python

    49510

    【Python】PySpark 数据计算 ⑤ ( RDD#sortBy方法 - 排序 RDD 中的元素 )

    RDD 中的每个元素提取 排序键 ; 根据 传入 sortBy 方法 的 函数参数 和 其它参数 , 将 RDD 中的元素按 升序 或 降序 进行排序 , 同时还可以指定 新的 RDD 对象的 分区数...降序排序 ; numPartitions: Int 参数 : 设置 排序结果 ( 新的 RDD 对象 ) 中的 分区数 ; 当前没有接触到分布式 , 将该参数设置为 1 即可 , 排序完毕后是全局有序的...; 返回值说明 : 返回一个新的 RDD 对象 , 其中的元素是 按照指定的 排序键 进行排序的结果 ; 2、RDD#sortBy 传入的函数参数分析 RDD#sortBy 传入的函数参数 类型为 :..., 获取到每个单词 , 根据上述单词列表 , 生成一个 二元元组 列表 , 列表中每个元素的 键 Key 为单词 , 值 Value 为 数字 1 , 对上述 二元元组 列表 进行 聚合操作 , 相同的...("查看文件内容展平效果 : ", rdd2.collect()) # 将 rdd 数据 的 列表中的元素 转为二元元组, 第二个元素设置为 1 rdd3 = rdd2.map(lambda element

    49310

    Spark RDD中的持久化

    持久化在早期被称作缓存(cache),但缓存一般指将内容放在内存中。虽然持久化操作在绝大部分情况下都是将RDD缓存在内存中,但一般都会在内存不够时用磁盘顶上去(比操作系统默认的磁盘交换性能高很多)。...当然,也可以选择不使用内存,而是仅仅保存到磁盘中。所以,现在Spark使用持久化(persistence)这一更广泛的名称。...如果一个RDD不止一次被用到,那么就可以持久化它,这样可以大幅提升程序的性能,甚至达10倍以上。...默认情况下,RDD只使用一次,用完即扔,再次使用时需要重新计算得到,而持久化操作避免了这里的重复计算,实际测试也显示持久化对性能提升明显,这也是Spark刚出现时被人称为内存计算的原因。...持久化的方法是调用persist()函数,除了持久化至内存中,还可以在persist()中指定storage level参数使用其他的类型。

    74530

    Spark之【RDD编程】详细讲解(No4)——《RDD中的函数传递》

    本篇博客是Spark之【RDD编程】系列第四篇,为大家带来的是RDD中的函数传递的内容。 该系列内容十分丰富,高能预警,先赞后看! ?...---- 5.RDD中的函数传递 在实际开发中我们往往需要自己定义一些对于RDD的操作,那么此时需要注意的是,初始化工作是在Driver端进行的,而实际运行程序是在Executor端进行的...isMatch()是定义在Search这个类中的,实际上调用的是this. isMatch(),this表示Search这个类的对象,程序在运行过程中需要将Search对象序列化以后传递到Executor...在这个方法中所调用的方法query是定义在Search这个类中的字段,实际上调用的是this. query,this表示Search这个类的对象,程序在运行过程中需要将Search对象序列化以后传递到Executor...class Search() extends Serializable{...} 2)将类变量query赋值给局部变量 修改getMatche2方法内部: //过滤出包含字符串的RDD def getMatche2

    51610

    spark中的rdd的持久化

    在rdd参与第一次计算后,设置rdd的存储级别可以保持rdd计算后的值在内存中。(1)另外,只有未曾设置存储级别的rdd才能设置存储级别,设置了存储级别的rdd不能修改其存储级别。...rdd的持久化操作有cache()和presist()函数这两种方式。 ---- Spark最重要的一个功能,就是在不同操作间,持久化(或缓存)一个数据集在内存中。...当你持久化一个RDD,每一个结点都将把它的计算分块结果保存在内存中,并在对此数据集(或者衍生出的数据集)进行的其它动作中重用。这将使得后续的动作(Actions)变得更加迅速(通常快10倍)。...cache()方法是使用默认存储级别的快捷方法,也就是StorageLevel.MEMORY_ONLY(将反序列化的对象存入内存)。...MEMORY_AND_DISK存储级别时当内存足够时直接保存到内存队列中,当内存不足时,将释放掉不属于同一个RDD的block的内存。

    1.1K80

    在 PySpark 中,如何将 Python 的列表转换为 RDD?

    在 PySpark 中,可以使用SparkContext的parallelize方法将 Python 的列表转换为 RDD(弹性分布式数据集)。...以下是一个示例代码,展示了如何将 Python 列表转换为 RDD:from pyspark import SparkContext# 创建 SparkContextsc = SparkContext.getOrCreate...()# 定义一个 Python 列表data_list = [1, 2, 3, 4, 5]# 将 Python 列表转换为 RDDrdd = sc.parallelize(data_list)# 打印...RDD 的内容print(rdd.collect())在这个示例中,我们首先创建了一个SparkContext对象,然后定义了一个 Python 列表data_list。...接着,使用SparkContext的parallelize方法将这个列表转换为 RDD,并存储在变量rdd中。最后,使用collect方法将 RDD 的内容收集到驱动程序并打印出来。

    6610

    Spark中RDD的运行机制

    Spark 的核心是建立在统一的抽象 RDD 之上,基于 RDD 的转换和行动操作使得 Spark 的各个组件可以无缝进行集成,从而在同一个应用程序中完成大数据计算任务。...每个 RDD 可以分成多个分区,每个分区就是一个数据集片段,并且一个 RDD 的不同分区可以保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算。...RDD 之间的依赖关系 RDD 中的不同的操作会使得不同 RDD 中的分区会产生不同的依赖关系,主要分为窄依赖(Narrow Dependency)与宽依赖(Wide Dependency)。...遇到窄依赖就把当前的 RDD 加入到当前的阶段中;将窄依赖尽量划分在同一个阶段中,可以实现流水线计算。...每个任务集合会被提交给任务调度器(TaskScheduler)进行处理,由任务调度器将任务分发给 Executor 运行。 ? 1.5.

    76310

    【赵渝强老师】Spark中的RDD

    通过RDD也提供缓存的机制,可以极大地提高数据处理的速度。  视频讲解如下:一、RDD的组成  在WordCount示例中,每一步都是生成一个新的RDD用于保存这一步的结果。...从图9.9可以看出在第一个Worker上处理的分区0中的数据,即:{1,2,3,4};而在第二个Worker处理的是分区1中的数据,即:{5,6,7,8}。...二、RDD的特性  在了解了RDD的基本概念后,那么RDD又具有什么样的特性呢?Spark RDD的源码中关于RDD的特性做了如下的解释。...用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU内核的数目。一个计算每个分区的函数  Spark中RDD的计算是以分区为单位。...每一次转换时可以定义一个新的RDD来保存这一步的结果,如下所示。

    17810

    Spark Core快速入门系列(1) | 什么是RDD?一文带你快速了解Spark中RDD的概念!

    RDD 表示只读的分区的数据集,对 RDD 进行改动,只能通过 RDD 的转换操作, 然后得到新的 RDD, 并不会对原 RDD 有任何的影响   在 Spark 中, 所有的工作要么是创建 RDD,...要么是转换已经存在 RDD 成为新的 RDD, 要么在 RDD 上去执行一些操作来得到一些计算结果.   ...只读   RDD 是只读的,要想改变 RDD 中的数据,只能在现有 RDD 基础上创建新的 RDD。   ...RDD的操作算子包括两类,一类叫做transformations,它是用来将RDD进行转化,构建RDD的血缘关系;另一类叫做actions,它是用来触发RDD的计算,得到RDD的相关计算结果或者将RDD...为此,RDD 支持checkpoint 将数据保存到持久化的存储中,这样就可以切断之前的血缘关系,因为checkpoint 后的 RDD 不需要知道它的父 RDDs 了,它可以从 checkpoint

    53410

    对spark中RDD的partition通俗易懂的介绍

    我们要想对spark中RDD的分区进行一个简单的了解的话,就不免要先了解一下hdfs的前世今生。 众所周知,hdfs是一个非常不错的分布式文件系统,这是这么多年来大家有目共睹的。...接下来我们就介绍RDD,RDD是什么?弹性分布式数据集。 弹性:并不是指他可以动态扩展,而是血统容错机制。 分布式:顾名思义,RDD会在多个节点上存储,就和hdfs的分布式道理是一样的。...我们就拿hdfs举例,将RDD持久化到hdfs上,RDD的每个partition就会存成一个文件,如果文件小于128M,就可以理解为一个partition对应hdfs的一个block。...鉴于上述partition大于128M的情况,在做sparkStreaming增量数据累加时一定要记得调整RDD的分区数。...那么该RDD保存在hdfs上就会有20个block,下一批次重新读取hdfs上的这些数据,RDD的partition个数就会变为20个。

    1.5K00

    初识 Spark | 带你理解 Spark 中的核心抽象概念:RDD

    RDD 允许用户在执行多个查询时,显式地将工作数据集缓存在内存中,后续的查询能够重用该工作数据集,极大地提升了查询的效率。...由于 RDD 是只读的数据集,如果对 RDD 中的数据进行改动,就只能通过 Transformation 操作,由一个或多个 RDD 计算生成一个新的 RDD,所以 RDD 之间就会形成类似 Pipeline...利用 parallelize() 方法将已经存在的一个 Scala 集合转换为 RDD,Scala 集合中的数据也会被复制到 RDD 中参与并行计算。...RDD Transformation 操作 RDD 的 Transformation(转换)操作,是在现有的 RDD 基础上创建并返回一个新的 RDD 的操作。...filter() 算子通过 Lambda 函数,将 squareRDD 中满足筛选条件的数据放入到 resultRDD 中返回。

    1.9K31

    用通俗的语言解释下:Spark 中的 RDD 是什么

    本文试图对其进行一个快速侧写,试图将这种大数据处理中化繁为简的美感呈现给你。 RDD 是什么 RDD 本质上是对数据集的某种抽象。...举个生活中例子,高中某个班级(Dataset),我们把他们按列分成四个小组(Partition),每个小组有大概十来个同学(Record)。任何一群人来了,我们都可以以这种形式将其进行组织。...数据集不能被原地( in-place) 的修改,即不能只修改集合中某个 Record。只能通过算子将一个数据集整体变换成另一个数据集。...常见的算子包括: 各种常见算子 如上图,算子可以分为两种: 变换算子(transformations):作用于 RDD 生成新的 RDD。 终结算子(action):定义结束运算时如何输出。...执行流程 从整体上理解,基于 RDD 的整个处理流程可以拆解为三个步骤: 将数据集从外部导入系统,变成初始 RDD。 将数据处理逻辑转换成一系列算子的组合,先后施加到 RDD 上。

    54830

    Spark中的RDD是什么?请解释其概念和特点。

    Spark中的RDD是什么?请解释其概念和特点。 Spark中的RDD(弹性分布式数据集)是一种分布式的、可并行操作的数据结构。它是Spark的核心抽象,用于表示分布式计算过程中的数据集合。...分区:RDD将数据集合划分为多个分区,每个分区存储在不同的计算节点上。这样可以实现数据的并行处理,提高计算效率。 不可变性:RDD是不可变的,即不能直接修改RDD中的数据。...如果需要对RDD进行转换或操作,会生成一个新的RDD。 延迟计算:RDD采用了惰性计算的策略,即只有在需要获取结果时才会进行计算。这样可以避免不必要的计算,提高计算效率。...通过这个案例,我们可以看到RDD的特点。首先,RDD是弹性的,可以在内存中缓存数据,并支持容错性。其次,RDD将数据集合划分为多个分区,实现数据的并行处理。...此外,RDD是不可变的,每次对RDD的转换操作都会生成一个新的RDD。最后,RDD采用了延迟计算的策略,只有在需要获取结果时才会进行计算。

    4400
    领券