Keras Model模型 Keras 中文文档 Keras 模型 Sequential 顺序模型 Sequential使用方法 一个简单的Sequential示例 构建方法 input shape 输入的形状...Keras 模型 Keras提供的模型,其中分为两类: Sequential 顺序模型 Model 类模型 我们可以通过 from keras.models import Sequential 或者 from...('relu')) input shape 输入的形状(格式) 构建一个模型时,第一层需要给出期待的Input shape ,剩余的层次会自动判断。...input shape是一个tuple格式的数据,可以是整数的tuple,也可以是None input shape中并没有batch dimension 批量维度 2D层,例如Dense,...与Sequential的compile的loss有所不同的是,Model的多个输出可以有多个loss,可以用过一个dict来声明:{'output_a':loss_func_1, 'output_b':
这允许我们从我们的脚本中重现结果: import numpy as np np.random.seed(123) 接下来,我们将从 Keras 导入 Sequential 模型类型。...换句话说,我们想将我们的数据集从形状(n,宽度,高度)转换为(n,宽度,高度,深度)。...y_train 和 y_test 数据没有分成 10 个不同的类标签,而是表示为具有类值的单个数组。...现在我们已准备好定义我们的模型架构。在实际的研发工作中,研究人员会花费大量时间研究模型架构。 为了让本教程继续进行,我们不打算在这里讨论理论或数学。...让我们首先声明一个顺序模型格式: model = Sequential() 接下来,我们声明输入层: model.add(Conv2D(32, kernel_size=(3, 3), activation
4 个这样的视频片段组成的批量将保存在形状为 (4, 240, 144, 256, 3)的张量中 如果将两个形状不同的张量相加,较小的张量会被广播(broadcast),以匹配较大张量的形状: 向较小的张量添加轴...gradient descent) -- 随机梯度下降 不同的张量格式与不同的数据处理类型需要用到不同的层,简单的向量数据保存在形状为 (samples, features) 的 2D 张量中,通常用密集连接层...图像数据保存在 4D 张量中,通常用二维卷积层(Keras 的 Conv2D )来处理 Keras框架具有层兼容性,具体指的是每一层只接受特定形状的输入张量,并返回特定形状的输出张量 layer = layers.Dense...这个层将返回一个张量,第一个维度的大小变成了 32 因此,这个层后面只能连接一个接受 32 维向量作为输入的层,使用 Keras 时,你无须担心兼容性,因为向模型中添加的层都会自动匹配输入层的形状,下一次层可以写为...添加 L1 和 / 或 L2 正则化 尝试不同的超参数(比如每层的单元个数或优化器的学习率),以找到最佳配置 (可选)反复做特征工程:添加新特征或删除没有信息量的特征 Deep learning
---- 在这个循序渐进的Keras教程中,您将学习如何使用Python构建卷积神经网络。 我们将训练一个手写数字识别分类器,其在著名的MNIST数据集上将具有超过99%的准确率。...这允许我们从我们的脚本中重现结果: import numpy as np np.random.seed(123) 接下来,我们将从Keras导入Sequential模型。...我们的MNIST图像的深度为1,但我们必须明确声明。 换句话说,我们希望将数据集从形状(n,width,height)转换为(n,depth,width,height)。...在实际的研发工作中,研究人员将花费大量时间研究模型架构。 为了使本教程继续进行,我们不打算在这里讨论理论或数学。...让我们首先声明一个顺序模型: model = Sequential() 接下来,我们声明输入层: model.add(Convolution2D(32, (3, 3), activation='relu
注意仅仅将embedded嵌入序列平铺,然后在单层全连接网络上训练,导致模型将输入序列的每个单词分割开来看,没有考虑句子的结构以及单词之间的关系。...和Keras的其他循环网络类似,SimpleRNN有两种运行方式:返回每个时间步的输出结果序列集,3D张量,形状(batch_size, timesteps, output_features);返回每个输入序列的最终输出结果...在机器学习中,不同但有用的表示总是值得利用,它们越不同越好:它们提供了一个新的查看数据的角度,捕获其他方法遗漏的数据的各个方面,可以帮助提高任务的性能。...接收3D张量,形状(samples,time,features),返回相同形状的3D张量。卷积窗口是时间周上的1D卷口,输入张量的axis1。...2D对应方式相同:它们由一堆Conv1D和MaxPooling1D层组成,以全局池层或Flatten层结束[将3D输出转换为2D输出],允许将一个或多个Dense层添加到模型中以进行分类或回归。
你可以将模型当成图像来为其绘制图表(使用 keras.utils.plot_model);或者简单地使用 model.summary() 来呈现层、权重以及形状的描述。...符号式模型提供了一个一致的 API,这就使得这些模型的重复使用和共享变得简单。例如,在迁移学习中,你可以访问中间层的神经元,从而从现有的神经元中创建新的模型,就像这样: ?...在符号式 API 中,你操作「声明式的张量」(这些张量是没有值的)来创建图表。...Keras 的 Sequential API 和 Functional API「感觉像」命令性的,它们是在开发者没有意识到他们在用符号定义模型的情况下被设计出来的。...最开始的时候可能会觉得这个操作有趣又简单,但是如果没有标准的话就会积累成技术债(tech debt)。 命令式模型也很难进行检测、复制和克隆。
这一次发布的是 Keras 官方中文文档,它得到了严谨的校对而提升了整体质量。但该项目还在进行中,虽然目前已经上线了很多 API 文档和使用教程,但仍然有一部分内容没有完成。...Keras 相对于其它深度学习库非常容易构建:首先它提供一致和简单的 API;其次,它提供独立的、完全可配置的模块构成序列或图表以完成模型;最后,作为新的类和函数,新的模块很容易扩展。...以下将简要介绍两种模型的使用方法: 1.Keras 顺序模型 你可以通过将层的列表传递给 Sequential 的构造函数,来创建一个 Sequential 模型: from keras.models...model.set_weights(weights): 从 Nympy array 中为模型设置权重。列表中的数组必须与 get_weights() 返回的权重具有相同的尺寸。...layer.set_weights(weights): 从 Numpy 矩阵中设置层的权重(与 get_weights 的输出形状相同)。
分类模型类似于人类学习的方式,通过对历史数据或训练集的学习得到一个目标函数,再用该目标函数预测新数据集的未知属性。分类模型主要包括两个步骤: 训练。...给定一个数据集,每个样本都包含一组特征和一个类别信息,然后调用分类算法训练模型。 预测。利用生成的模型对新的数据集(测试集)进行分类预测,并判断其分类结果。 通常为了检验学习模型的性能会使用校验集。...分类和回归都属于监督学习,它们的区别在于:回归是用来预测连续的实数值,比如给定了房屋面积来预测房屋价格,返回的结果是房屋价格;而分类是用来预测有限的离散值,比如判断一个人是否患糖尿病,返回值是“是”或“...最终MNIST的训练数据集形成了一个形状为55000*784位的tensor,也就是一个多维数组,第一维表示图片的索引,第二维表示图片中像素的索引(tensor中的像素值在0到1之间)。...X_train.reshape(X_train.shape[0], -1) / 255 将每个像素点进行标准化处理,从0-255转换成0-1的范围。
每幅帧就是彩色图像,可以存储在形状是 (宽度,高度,通道) 的 3D 张量中 视屏 (一个序列的帧) 可以存储在形状是 (帧数,宽度,高度,通道) 的 4D 张量中 一批不同的视频可以存储在形状是 (样本数...这样的视频剪辑将存储在形状为 (40, 240, 1280, 720, 3) 的张量中。 ? 5 维张量的数据表示图如下: ?...不同数据格式或不同数据处理类型需要用到不同的层,比如 形状为 (样本数,特征数) 的 2D 数据用全连接层,对应 Keras 里面的 Dense 形状为 (样本数,步长,特征数) 的 3D 序列数据用循环层...损失函数 在 Keras 里将层连成模型确定网络架构后,你还需要选择以下两个参数,选择损失函数和设定优化器。 在训练过程中需要将最小化损失函数,这它是衡量当前任务是否已成功完成的标准。...Keras 会自动帮你连起来,那么 Flatten 层接受形状 28 × 28 的二维数据,输出形状 780 的一维数据 第一个 Dense 层接受形状 100 的一维数据,输出形状 10 的一维数据
就像这个记忆实验中的象棋棋手一样,一个自编码器会查看输入信息,将它们转换为高效的潜在表征,然后输出一些(希望)看起来非常接近输入的东西。...自编码器总是由两部分组成:将输入转换为潜在表征的编码器(或识别网络),然后是将潜在表征转换为输出的解码器(或生成网络)(见图 17-1)。 ?...=keras.optimizers.SGD(lr=0.1)) 这段代码与我们在前面章节中创建的所有 MLP 没有什么大不同。...两者都是常规的Sequential模型,每个含有一个紧密层,自编码器是一个编码器和解码器连起来的Sequential模型(模型可以用作其它模型中的层)。 自编码器的输出等于输入。...总之,我们遵守了DCGAN的建议,除了将判别器中的BatchNormalization替换成了Dropout层(否则训练会变得不稳定),生成器的ReLU替换为SELU。
在Keras框架中通过把相互兼容的网络层堆叠形成数据处理过程,而网络层的兼容性是指该网络层接收特定形状的输入张量同时返回特东形状的输出张量。...在Keras中,不必担心网络的兼容性,因为添加到网络模型中的网络层是动态构建地,匹配接下来连接的网络层。...网络模型:网络层堆叠而成 一个神经网络模型是网络层的非循环连接而成。最常见的是网络层的线性连接堆叠,讲一个输入张量转换为一个输出张量。...,不必区分到底网络模型是怎么定义的,之后的处理步骤没有差别。...=['accuracy']) 最后,通过fit()方法将numpy数组形式的输入数据(以及对应标签)输入到网络模型中进行模型的学习过程。
用Keras层和模型来管理变量 ---- Keras模型和层提供了便利的variables和trainable_variables属性,可以递归地手机所有依赖的变量。...比如你正在训练一个共享主干的multi-headed的模型: trunk = tf.keras.Sequential([...]) head1 = tf.keras.Sequential([...])...通过tf.function()来封装你的代码,可以充分利用数据集异步预抓取/流式特性,它会用AutoGraph将Python迭代器替换为等价的图操作。...和Python控制流 ---- AutoGraph提供了一种将依赖数据的控制流转换为图模式的等价物,如tf.cond和tf.while_loop。...Metrics是有状态的,它们会累积值并在你调用.reuslt()方法时返回一个累计结果。你可以用.reset_states()方法来清除累积的值。
您可以将其绘制为图像以显示图(使用 keras.utils.plot_model),或者直接使用 model.summary(),或者参见图层,权重和形状的描述来显示图形 同样,在将图层连接在一起时,库设计人员可以运行广泛的图层兼容性检查...例如,在迁移学习中,您可以访问中间层激活来从现有的模型中构建新模型,如下所示: from tensorflow.keras.applications.vgg19 import VGG19 base =...Keras Sequential 和 Functional API “感觉” 势在必行。它们的设计使许多开发人员没有意识到他们已经象征性地定义了模型。...这两种样式也是完全可互操作的,因此您可以混合搭配(例如,您可以将一种模型类型嵌套在另一种模型类型中)。您可以将符号模型用作子类模型中的一个层,或者相反。...相反,提取激活的方法是使用新的调用(或 forward)方法编写新类。一开始写起来可能很有趣,做起来也很简单,但这可能会导致没有标准的 tech debt 命令模型也更难以检查,复制或克隆。
小编猜想,这两者都是比较基础的知识,涉及到的知识应该主要包含:全连接神经网络搭建简单模型,数据集的加载,以及根据数据集搭建全连接神经网络模型进行训练(也有可能会涉及到卷积)。...这两种方式能帮助快速地搭建模型,但并不意为这两者方式不能搭建复杂的模型,本文将以典型案例手写数字识别为例,来看看如何运用tf.keras.Sequential和Keras Functional API,...,并指明输入的维度及其形状 model.build(input_shape=[None,28,28,1]) 4 Sequential模型训练 本文提到的两种方式,在模型的训练上都可以直接调用model.compile...并且每一层都可以独立提出来,也就是说可以查看每一层的输出情况,可以在一些复杂模型中抽取特定层放入自己的代码中,比如抽取VGG19中的某些层放在自己的代码中去实现图像的风格迁移。...6 总结 tf.keras.Sequential和Keras Functional API都可以有助于快速地建立神经网络模型,.Sequential简单易懂,在既定框架下可以最快的搭建些不是很复杂的模型
本文将教你如何使用Keras这个Python库完成深度学习模型的分类与回归预测。 当你在Keras中选择好最合适的深度学习模型,就可以用它在新的数据实例上做预测了。...在本文中,你会学到如何使用Keras这个Python库完成深度学习模型的分类与回归预测。...在Keras中,可以利用predict_class()函数来完成我们上述所说的内容----即利用最终的模型预测新数据样本的类别。...它被称为“概率预测”,当给定一个新的实例,模型返回该实例属于每一类的概率值。(0-1之间) 在Keras中,我们可以调用predict_proba()函数来实现。...比如会输出0.1或0.2这样的数字。 下边是一个Keras回归的模型。
文本向量化(vectorize)是指将文本转换为数值张量的过程。 将文本分割为单词,并将每个单词转换为一个向量。 将文本分割为字符,并将每个字符转换为一个向量。...最好将Embedding 层理解为一个字典,将整数索引(表示特定单词)映射为密集向量。它接收整数作为输入,并在内部字典中查找这些整数,然后返回相关联的向量。...实际上,RNN 是一类具有内部环的神经网络。在处理两个不同的独立序列(比如两条不同的IMDB 评论)之间,RNN 状态会被重置,因此,你仍可以将一个序列看作单个数据点,即网络的单个输入。...#SimpleRNN 可以在两种不同的模式下运行:一种是返回每个时间步连续输出的完整序列,即形状为(batch_size, timesteps, output_features)的三维张量; #另一种是只返回每个输入序列的最终输出...中的带dropout的LSTM 层 from keras.layers import LSTM model = Sequential() model.add(Embedding(max_features
7.2 构建 Keras 模型的不同方式 Keras 有三种构建模型的 API(见图 7.1): Sequential 模型,最易接近的 API——基本上就是一个 Python 列表。...因此,前面的 Sequential 模型没有任何权重(列表 7.3),直到您实际在一些数据上调用它,或者使用输入形状调用其 build() 方法(列表 7.4)。...但在构建模型之前无法打印摘要!实际上,有一种方法可以让你的Sequential动态构建:只需提前声明模型输入的形状即可。你可以通过Input类实现这一点。...在后一种情况下,它们将返回一个新的符号张量,带有更新的形状和 dtype 信息: >>> features.shape (None, 64) 在获得最终输出后,我们通过在Model构造函数中指定其输入和输出来实例化模型...它通常会返回输入数据和标签的批次。你可以直接将 Dataset 对象传递给 Keras 模型的 fit() 方法。
为什么区分训练集和测试集 不应该将训练机器学习模型的同一批数据再用于测试模型!...模型在训练数据上的表现很好,并不意味着它在前所未见的数据上也会表现得很好,而且我们真正关心的是模型在新数据上的性能(因为已经知道了训练数据对应的标签,显然不再需要模型来进行预测)。...网络可以描述为; 本次使用顺序模型进行编程. Keras构建网络 在 Keras 中有两类主要的模型:Sequential 顺序模型 和 使用函数式 API 的 Model 类模型。...方法二 也可以使用.add()方法将各层添加到模型中: model = Sequential() model.add(Dense(32, input_dim=784)) model.add(Activation...中文文档 深入学习Keras中Sequential模型及方法
领取专属 10元无门槛券
手把手带您无忧上云