首页
学习
活动
专区
圈层
工具
发布

技术译文 | 数据库只追求性能是不够的!

每次客户对我们与 Azure 进行正面评估时,他们最终都会选择 BigQuery。...在 BigQuery 中,我们将 JDBC 驱动程序的构建外包给了一家专门构建数据库连接器的公司。如果您不熟悉 JDBC,它们提供了程序员和商业智能工具用来连接数据库的通用接口。...您可以更轻松地将查询结果转换为他们可以理解的内容。当他们没有提出正确的问题时,您可以帮助他们获得反馈。您可以帮助他们了解数据何时出现问题。...在 BigQuery 中,我编写了第一个 CSV 拆分器,当发现它是一个比预期更棘手的问题时,我们派了一位新的研究生工程师来解决这个问题。...根据数据库系统的架构方式,此查询可以是瞬时的(返回第一页和游标,如 MySQL),对于大型表可能需要数小时(如果必须在服务器端复制表,如 BigQuery) ),或者可能会耗尽内存(如果它尝试将所有数据拉入客户端

80910

【Rust日报】2020-03-30 大表数据复制工具dbcrossbar 0.3.1即将发布新版本

dbcrossbar 0.3.1: 开源大表数据复制工具即将发布新版本 dbcrossbar 0.3.1: Copy large tables between BigQuery, PostgreSQL,...RedShift, CSV, S3, etc....(已经知道未来在Version 1.0还将会有更重大的信息披露) 你可以使用dbcrossbar将CSV裸数据快速的导入PostgreSQL,或者将PostgreSQL数据库中的表 在BigQuery里做一个镜像表来做分析应用...在工具程序内部,dbcrossbar把一个数据表表达成多个CSV数据流, 这样就避免了用一个大的CSV文件去存整个表的内容的情况,同时也可以使得应用云buckets更高效。...它知道怎么自动的来回将PostgreSQL的表定义转换成BigQuery的表定义。 Rust的异步功能已经在这个开源项目中被证明了Rust是一种超级牛的编程语音。

1.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    拿起Python,防御特朗普的Twitter!

    将词汇表大小定义为唯一单词的数量+ 1。这个vocab_size用于定义要预测的类的数量。加1必须包含“0”类。word_index.values()没有使用0定义单词。...现在我们已经将所有语法数据都作为JSON,有无数种方法可以分析它。我们没有在tweet出现时进行分析,而是决定将每条tweet插入到一个BigQuery表中,然后找出如何分析它。...BigQuery:分析推文中的语言趋势 我们创建了一个包含所有tweet的BigQuery表,然后运行一些SQL查询来查找语言趋势。下面是BigQuery表的模式: ?...幸运的是,BigQuery支持用户定义的函数(UDF),它允许你编写JavaScript函数来解析表中的数据。...数据可视化 BigQuery与Tableau、data Studio和Apache Zeppelin等数据可视化工具很棒。将BigQuery表连接到Tableau来创建上面所示的条形图。

    6.9K30

    一顿操作猛如虎,涨跌全看特朗普!

    将词汇表大小定义为唯一单词的数量+ 1。这个vocab_size用于定义要预测的类的数量。加1必须包含“0”类。word_index.values()没有使用0定义单词。...BigQuery:分析推文中的语言趋势 我们创建了一个包含所有tweet的BigQuery表,然后运行一些SQL查询来查找语言趋势。...下面是BigQuery表的模式: 我们使用google-cloud npm包将每条推文插入到表格中,只需要几行JavaScript代码: 表中的token列是一个巨大的JSON字符串。...幸运的是,BigQuery支持用户定义的函数(UDF),它允许你编写JavaScript函数来解析表中的数据。...将BigQuery表连接到Tableau来创建上面所示的条形图。Tableau允许你根据正在处理的数据类型创建各种不同的图表。

    5.4K40

    15 年云数据库老兵:数据库圈应告别“唯性能论”

    如果你的数据在一个稍有问题的 CSV 文件中,或者你要提的问题很难用 SQL 表述,那么理想的查询优化器也将无济于事。...每次客户拿我们和 Azure 对比评估时,客户最终都会选择 BigQuery。...在 BigQuery 中,我编写了我们的第一个 CSV 拆分器,但当问题比预期更为棘手时,我们派了一名刚毕业的工程师来解决这个问题。...因此,可以将 CSV 文件推断视为一种性能特性。 数据库处理结果的方式对用户体验有巨大影响。例如,很多时候,人们会运行 SELECT * 查询来试图理解表中的内容。...根据数据库系统的体系结构,该查询可以瞬间完成(返回第一页和游标,如 MySQL),对于大表可能需要数小时(如果必须在服务器端复制表,如 BigQuery),或者可能耗尽内存(如果尝试将所有数据拉取到客户端

    71110

    2018年ETL工具比较

    通常,公司在了解尝试编码和构建内部解决方案的成本和复杂性时,首先意识到对ETL工具的需求。 在选择合适的ETL工具时,您有几种选择。您可以尝试组装开源ETL工具以提供解决方案。...操作在服务器上执行,服务器连接到源和目标以获取数据,应用所有转换,并将数据加载到目标系统中。...当您的批量数据上传出现问题时,您需要快速跟踪问题,排除故障并重新提交作业。...错误处理:手动,记录记录在拒绝表中 转型:准ETL,有限 StreamSets StreamSets是一个云原生的产品集合,用于控制数据漂移; 数据,数据源,数据基础设施和数据处理方面的变化问题。...原文标题《2018 ETL Tools Comparison》 作者:Garrett Alley 译者:February 不代表云加社区观点,更多详情请查看原文链接

    5.6K21

    1年将超过15PB数据迁移到谷歌BigQuery,PayPal的经验有哪些可借鉴之处?

    自动化框架不断轮询本地基础架构的更改,并在创建新工件时在 BigQuery 中创建等效项。...源上的数据操作:由于我们在提取数据时本地系统还在运行,因此我们必须将所有增量更改连续复制到 BigQuery 中的目标。对于小表,我们可以简单地重复复制整个表。...例如,我们在应用程序依赖的源数据中包含带有隐式时区的时间戳,并且必须将其转换为 Datetime(而非 Timestamp)才能加载到 BigQuery。...同样,在复制到 BigQuery 之前,必须修剪源系统中的字符串值,才能让使用相等运算符的查询返回与 Teradata 相同的结果。 数据加载:一次性加载到 BigQuery 是非常简单的。...如果干运行成功,我们会将数据加载到表中并要求用户进行湿运行。湿运行是一次性执行,用来测试结果集是否全部正确。我们为用户创建了用于湿运行的测试数据集,在湿运行后再验证他们的生产负载。

    6.4K20

    PQ小问题小技巧8个,第一个就很多人都遇到了!

    2、PQ数据加载不完整问题 小勤:为什么PQ处理的数据加载到Excel时最后一行是一堆省略号? 大海:数据上载不全,在某些版本里偶然存在这种情况,一般在Excel里再刷新一下数据即可。...3、整列替换技巧 小勤:PQ中,将一列中的所有值替换为null空值,怎么操作好呢? 大海:原列删掉,直接加一列空的 小勤:加一列空的,怎么加呀?...6、超过百万行数据加载到Excel 小勤:我目前处理的数据已经超过100万行了,我想要把power query中清洗的数据加载到CSV中保存,但是在加载的时候总是显示不能完全加载缺失数据,跟Excel一样只能显示...大海:PQ本身不支持将数据加载到CSV,只能先加载的Excel,然后再另存为CSV,但Excel本身对单表就是有行数限制的,所以会显示不能完全加载的情况。...或者将数据加载到数据模型,然后通过DAX Studio等工具导出为CSV文件。

    3.1K30

    Flink与Spark读写parquet文件全解析

    这种方法最适合那些需要从大表中读取某些列的查询。 Parquet 只需读取所需的列,因此大大减少了 IO。...Parquet 的一些好处包括: 与 CSV 等基于行的文件相比,Apache Parquet 等列式存储旨在提高效率。查询时,列式存储可以非常快速地跳过不相关的数据。...Parquet 和 CSV 的区别 CSV 是一种简单且广泛使用的格式,被 Excel、Google 表格等许多工具使用,许多其他工具都可以生成 CSV 文件。...即使 CSV 文件是数据处理管道的默认格式,它也有一些缺点: Amazon Athena 和 Spectrum 将根据每次查询扫描的数据量收费。...本文以flink-1.13.3为例,将文件下载到flink的lib目录下 cd lib/ wget https://repo.maven.apache.org/maven2/org/apache/flink

    6.8K74

    「数据仓库技术」怎么选择现代数据仓库

    在这篇文章中,我们将深入探讨在选择数据仓库时需要考虑的因素。在这里,他们是: 数据量 专门负责人力资源的支持和维护 可伸缩性:水平与垂直 定价模型 数据量 您需要知道将要处理的数据量的估计。...让我们看看一些与数据集大小相关的数学: 将tb级的数据从Postgres加载到BigQuery Postgres、MySQL、MSSQL和许多其他RDBMS的最佳点是在分析中涉及到高达1TB的数据。...Redshift集群的计算能力将始终依赖于集群中的节点数,这与其他一些数据仓库选项不同。 这就是BigQuery这样的解决方案发挥作用的地方。...定价 如果您使用像Hadoop这样的自托管选项,那么您的定价将主要由VM或硬件账单组成。AWS提供了一种EMR解决方案,在使用Hadoop时可以考虑这种方案。...结论 我们通常向客户提供的关于选择数据仓库的一般建议如下: 当数据总量远小于1TB,每个分析表的行数远小于500M,并且整个数据库可以容纳到一个节点时,使用索引优化的RDBMS(如Postgres、MySQL

    6.3K31

    寻觅Azure上的Athena和BigQuery(一):落寞的ADLA

    AWS Athena和Google BigQuery都是亚马逊和谷歌各自云上的优秀产品,有着相当高的用户口碑。...AWS Athena和Google BigQuery当然互相之间也存在一些侧重和差异,例如Athena主要只支持外部表(使用S3作为数据源),而BigQuery同时还支持自有的存储,更接近一个完整的数据仓库...我们准备了一个约含一千行数据的小型csv文件,放置在s3存储中,然后使用Athena建立一个外部表指向此csv文件: ? ?...我们的脚本中没有使用外部表(U-SQL中外部表仅支持SQLServer系数据库)但通过Extractors.Csv方法达到了同样的目的。...要知道在ADLA/ADLS诞生之初,它们可是背负着将微软内部大数据平台Cosmos(非现在的CosmosDB)进行云产品化的重任。

    2.9K20

    Parquet

    这种方法最适合需要从大型表读取某些列的查询。Parquet只能读取所需的列,因此大大减少了IO。...以列格式存储数据的优点: 与CSV等基于行的文件相比,像Apache Parquet这样的列式存储旨在提高效率。查询列式存储时,您可以非常快地跳过无关数据。...Apache Parquet最适合与AWS Athena,Amazon Redshift Spectrum,Google BigQuery和Google Dataproc等交互式和无服务器技术配合使用。...即使CSV文件是数据处理管道的默认格式,它也有一些缺点: Amazon Athena和Spectrum将根据每个查询扫描的数据量收费。...Parquet帮助其用户将大型数据集的存储需求减少了至少三分之一,此外,它大大缩短了扫描和反序列化时间,从而降低了总体成本。 下表比较了通过将数据从CSV转换为Parquet所节省的成本以及提速。

    1.7K20

    在AI技术快速实现创想的时代,挖掘真实需求成为核心竞争力——某知名企业级文本转SQL评估框架深度解析

    该系统特别关注企业级应用场景,包括处理大规模数据(超过3000列)、支持多种SQL方言(如BigQuery、Snowflake等)以及多样化的数据操作需求。...用户可以通过提供的Spider-Agent框架快速进行模型基准测试,并生成符合要求的CSV格式输出结果。d.使用说明使用该系统需要先注册BigQuery和Snowflake账户。...对于BigQuery账户,需要按照提供的指南获取自己的凭证;对于Snowflake账户,需要填写访问申请表,系统会发送账户注册邮件。...e.潜在新需求(1)用户希望支持基于LLM判断的结果评估机制,而不是严格的字面匹配规则,以提高对格式差异的容错能力(2)用户希望延长或取消Snowflake SQL查询的60秒时间限制,以支持更复杂的查询场景...requirements.txt文件和支持不同硬件平台(如Apple M系列芯片)的安装方案(7)用户希望提供更多的训练数据和使用指南,包括数据集划分方案和允许的训练范围说明(8)用户希望支持DuckDB源表的

    23710

    0基础学习PyFlink——使用PyFlink的Sink将结果输出到外部系统

    Sink Sink用于将Reduce结果输出到外部系统。它也是通过一个表(Table)来表示结构。这个和MapReduce思路中的Map很类似。...这一步只能创建表和连接器,具体执行还要执行下一步。 Execute 因为source和WordsCountTableSink是两张表,分别表示数据的输入和输出结构。...如果要打通输入和输出,则需要将source表中的数据通过某些计算,插入到WordsCountTableSink表中。于是我们主要使用的是insert into指令。...输出结果如下 Using Any for unsupported type: typing.Sequence[~T] No module named google.cloud.bigquery_storage_v1...这块对比我们将在后续将流处理时介绍区别。 附上input1.csv内容 "A", "B", "C", "D", "A", "E", "C", "D", "A",

    64310

    Dbt基本概念与快速入门

    每个模型都是一个SQL查询,它通常表示一个数据表或视图。依赖关系(Dependencies):模型之间可以有依赖关系,DBT会自动处理这些依赖关系。...运行DBT:使用dbt run命令执行SQL模型,将数据加载到目标数据库。测试数据质量:使用dbt test命令对数据进行测试,确保数据的质量。...安装DBT(以BigQuery为例):pip install dbt-bigquery 对于其他数据库(如Snowflake、Redshift等),只需安装相应的DBT适配器,如:pip install...下面是一个连接 BigQuery 的示例:my_project: target: dev outputs: dev: type: bigquery method: service-account...3.5 运行DBT模型使用dbt run命令来执行SQL模型,将数据加载到数据仓库中:dbt runphp7 Bytes© 菜鸟-创作你的创作DBT将自动处理模型之间的依赖关系,按顺序执行并将结果存储到目标数据库

    82710

    别再瞎忙活了,老刘教你三步搞定企业数据:ETL 入门

    这些年,企业能接触到的数据来源越来越多,格式也五花八门:数据库、网站、SaaS 应用、各种分析工具……可问题是,数据都东一堆西一堆地放着,想把里面的价值抠出来可不容易,尤其是想用来做更聪明的业务决策时。...来源可能包括:各种关系型/非关系型数据库各类平面文件(XML、JSN、CSV、Excel 表)CRM、ERP 这样的 SaaS 系统API 接口网站分析和监控工具系统日志和元数据ETL 有两种:批量(Batch...一般用数据仓库(像 Ggle BigQuery、Amazn Redshift)或者数据湖。仓库可以在云上,也能自己在机房搭。数据湖是专门用来放那些还没清理、没结构化的“原始数据”。为什么要用 ETL?...不管哪种方式,都要干这些事:解析/清洗:把 JSN、XML、CSV 这些乱七八糟的格式,整理成统一的表结构数据丰富:补充业务知识、修正差错;更新频率:数据多久更新一次;数据验证:检查空值、坏数据,决定是跳过还是人工审查...量太大可以按月汇总,或加硬件。3.选择方法:更新通知:最理想,源系统一改数据就通知你同步;增量抽取:找出改动的数据,只抽这些;全量抽取:全盘拉一次,适合小数据量。

    21000
    领券