引言随着大数据时代的来临,传统SQL方式在处理海量数据的N度关联关系时显得力不从心。图计算技术因其优越性开始崭露头角,尤其在金融领域、广告推荐等实际场景中迅速落地。...本文将深入探讨图计算,以Spark GraphX为例,展示其在任务关系网处理中的应用。我们将从代码解析、运行实例出发,进一步展望图计算在未来的应用场景和其在国内的发展现状。...背景介绍通过 Spark Graphx 图计算实现任务关系网的处理。例如:简单模拟出在一批历史数据,通过 Spark Graphx 将有关联的数据之间组成一张张社交子网。...导入必要的库首先,我们需要导入与Spark相关的类和库,这包括 SparkConf 用于配置 Spark,Edge 和 Graph 用于构建图,以及 RDD 用于并行处理数据。...构建顶点和边的 RDD定义图的顶点和边,其中每个顶点表示一个人,每条边表示两人之间的朋友关系。
比如微信的社交网络,是由节点(个人、公众号)和边(关注、点赞)构成的图;淘宝的交易网络,是由节点(个人、商品)和边(购买、收藏)构成的图。...由于依赖的底层数据模型 RDD 的不变性,计算过程中会产生大量新的 RDD 作为中间结果,虽然 GraphX 对不变的顶点和边进行了一定程度的的复用优化,但框架本身限制还是导致了大量的内存占用和较差的性能...Plato:切图将顶点集合按照块式划分,并使每个顶点和它的所有出边/入边在同 1 个分片上,该原则保证了 Plato 在两种通信模式(Pull/Push)下的高效率执行。...图7 为适用于 Pull 通信模式的切图方式,将顶点和其出边划分到了 1 个分片上。...在图数据存储方面,Plato 通过良好的数据结构设计,大大减少了内存占用。并且其顶点索引和边数组的结构设计,实现了获取某顶点邻居的时间开销为 O(1)。
(1)Spark GraphX 是 Spark 的一个模块,主要用于进行以图为核心的计算还有分布式图的计算。 ...(2)GraphX 他的底层计算也是 RDD 计算,它和 RDD 共用一种存储形态,在展示形态上可以以数据集来表示,也可以图的形式来表示。 2、Spark GraphX 有哪些抽象?...VD 和 ED 是类型参数,VD 表示顶点的属性,ED 表示边的属性。 (4)图。 图在 Spark 中用 Graph[VD, ED] 来表示,可以通过顶点和边来构建。...========== Spark GraphX 图的结构操作 ========== 1、def reverse: Graph[VD, ED] 该操作反转一个图,产生一个新图,新图中的每条边的方向和原图每条边的方向相反...mapFunc: (VertexId, VD, U) => VD): Graph[VD, ED] 该操作通过 mapFunc 函数将 table 中提供的数据更新到相同 VertexId 的属性里。
Spark中的图计算库GraphX是什么?请解释其作用和常用操作。 Spark中的图计算库GraphX是一个用于处理大规模图数据的分布式计算框架。...它基于Spark的分布式计算引擎,提供了高性能和可伸缩性的图计算功能。GraphX支持图的创建、转换、操作和分析,可以用于解决各种图数据分析和挖掘问题。...GraphX的主要作用是处理大规模图数据,并进行图计算和分析。图数据通常由节点和边组成,节点表示实体或对象,边表示节点之间的关系或连接。图数据可以用于表示社交网络、知识图谱、网络拓扑等各种实际场景。...GraphX提供了一套丰富的图算法和操作,可以对图数据进行各种计算和分析,如图搜索、图聚类、图剪枝、图遍历等。 为了更好地理解GraphX的作用和常用操作,让我们来看一个具体的案例。...假设我们有一个社交网络的图数据,其中节点表示用户,边表示用户之间的关注关系。我们希望通过分析这个图数据,找出具有影响力的用户和他们之间的关系。
GraphX介绍 GraphX应用背景 Spark GraphX是一个分布式图处理框架,它是基于Spark平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求。...Spark GraphX由于底层是基于Spark来处理的,所以天然就是一个分布式的图处理系统。...这样做的好处是节省存储空间;坏处是对图进行基于边的计算时,对于一条两个顶点被分到不同机器上的边来说,要跨机器通信传输数据,内网通信流量大。...而边分割会使那些多邻居的点所相连的边大多数被分到不同的机器上,这样的数据分布会使得内网带宽更加捉襟见肘,于是边分割存储方式被渐渐抛弃了。...GraphX计算模式 如同Spark一样,GraphX的Graph类提供了丰富的图运算符,大致结构如下图所示。
该GraphX API 使用户能够将数据既可以当作一个图,也可以当作集合(即RDDS)而不用进行数据移动或数据复制。通过引入在图并行系统中的最新进展,GraphX能够优化图形操作的执行。...GraphX 替换 Spark Bagel 的 API 在GraphX 的发布之前,Spark的图计算是通过Bagel实现的,后者是Pregel的一个具体实现。...要了解更多有关如何开始使用Spark参考 Spark快速入门指南。 属性图 该 属性图是一个用户定义的顶点和边的有向多重图。有向多重图是一个有向图,它可能有多个平行边共享相同的源和目的顶点。...然而,因为GraphX将顶点和边保存在优化的数据结构,并且为这些数据结构提供额外的功能,顶点和边分别作为VertexRDD和EdgeRDD返回。在本节中,我们回顾一些这些类型的其他有用的功能。...GraphX 采用顶点切的方法来分发图划分: ? 不通过边划分图,GraphX 沿顶点来划分图,这样可以减少顶点之间的通信和存储开销。逻辑上,这对应于将边分配到不同的机器,并允许顶点跨越多个机器。
Spark GraphX 是一个分布式图处理框架,它是基于 Spark 平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求。那么什么是图,都计算些什么?...GraphX 是一个新的 Spark API,它用于图和分布式图(graph-parallel)的计算。...GraphX 通过引入弹性分布式属性图(Resilient Distributed Property Graph): 顶点和边均有属性的有向多重图,来扩展Spark RDD。...GraphX 允许用户把数据当做一个图和一个集合(RDD),而不需要数据移动或者复制。...这里转换为 toBitSet 保存是为了节省空间。 根据上文生成的 routingTables,重新封装路由表里的数据结构为 ShippableVertexPartition。
我还描述了Spark的GraphX库如何让您在图形数据结构上进行这种计算,以及我如何获得一些使用RDF数据的想法。我的目标是在GraphX数据上使用RDF技术,或者,以演示(他们彼此)如何互相帮助。...今天我将通过读取一个众所周知的RDF数据集并在其上执行GraphX的连接组件算法来演示后者。该算法将节点收集到彼此连接但不连接到其他任何节点的分组中。...基本的Spark数据结构是弹性分布式数据集(Resilient Distributed Dataset, or RDD)。GraphX使用的图形数据结构是顶点RDD和边RDD的组合。...在GraphX图中存储RDF的第一步显然是将谓词存储在边RDD,并将顶点RDD中的主体和资源对象以及文字属性作为这些RDD中的额外信息,如(名称,角色)对和Spark网站的Example Property...创建一个国会图书馆标题表连接组件的报告 加载这些数据结构(加上另一个允许快速查找的参考标签)后,我下面的程序将GraphX连接组件算法应用到使用skos:related属性连接顶点的图的子集,如“Cocktails
例如,我们可以使用缺少顶点的图运行连接的组件,然后将答案限制为有效的子图。...以下是 Pregel 运算符 的类型签名以及 其实现的草图(注意:为了避免由于长谱系链引起的 stackOverflowError , pregel 支持周期性检查点图和消息,将 “spark.graphx.pregel.checkpointInterval...分区策略是必须的,以便在相同的分区上共同使用相同的边,以便可以进行重复数据删除。 Vertex and Edge RDDs GraphX 公开 RDD 了图中存储的顶点和边的视图。...然而,由于 GraphX 在优化的数据结构中维护顶点和边,并且这些数据结构提供了附加功能,所以顶点和边分别作为VertexRDD 和 EdgeRDD 返回 。...此外, VertexRDD[A] 表示一组顶点,每个顶点的属性类型A。在内部,这是通过将顶点属性存储在可重用的散列图数据结构中来实现的。
不同来源的异构数据间存在着千丝万缕的关联,这种数据之间隐藏的关联关系和网络结构特性对于数据分析至关重要,图计算就是以图作为数据模型来表达问题并予以解决的过程。...但传统关系型数据库在分析大规模数据关联特性时存在性能缺陷、表达有限等问题,因此有着更强大表达能力的图数据受到业界极大重视,图计算就是以图作为数据模型来表达问题并予以解决的过程。...二、算法应用 为了支撑大规模图计算的业务需求,Nebula Graph 基于 GraphX 提供了 PageRank 和 Louvain 社区发现的图计算算法,允许用户通过提交 Spark 任务的形式执行算法应用...此外,用户也可以通过 Spark Connector 编写 Spark 程序调用 GraphX 自带的其他图算法,如 LabelPropagation、ConnectedComponent 等。...将节点 i 分配到某一社区中,社区的模块度变化为: [graphx-13.png] 其中 k_{i,in}: 社区内所有节点与节点 i 连边权重之和(对应新社区的实际内部权重和乘以 2,因为 k_{i,
所以,为了补充该部分(模式匹配)的功能,这里使用 Spark GraphX 来满足 OLAP 的计算需求。...GraphX 介绍 GraphX 是 Spark 生态的一个分布式图计算引擎,提供了许多的图计算接口,方便进行图的各项操作。...总结 利用 GraphX 的 Pregel API 进行广度优先遍历来实现模式匹配的好处: GraphX 有多种图算子可以灵活处理图数据; 基于 Pregel,使用路径当做消息可以灵活控制模式子图的结构...最后,虽然 GraphX 使用起来上手有一定难度,计算也高度依赖内存,但瑕不掩瑜它仍然是一款优秀的图计算框架,尤其是分布式的特性能够进行大量数据的计算,同时 Spark 又能较好地与大数据生态集成,又有官方提供的...nebula-spark-connector 方便读写 Nebula 数据,使用起来还是非常不错的。
Spark 和 GraphX 对并不提供对数据可视化的支持, 它们所关注的是数据处理. 但是, 一图胜千言, 尤其是在数据分析时. 接下来, 我们构建一个可视化分析图的 Spark 应用....{Graph => GraphStream} 绘制 首先是使用 GraphX 加载一个图, 然后将这个图的信息导入 graphstream 的图中进行可视化....addNode 和 addEdge 方法来添加节点和边, 也可以调用 addAttribute 方法来给图, 或是单独的边和顶点来设置可视化属性. graphsteam API 非常好的一点是, 它将图的结构和可视化用一个类...将 GraphX 所构建图的 VertexRDD 和 EdgeRDD 里面的内容加入到 GraphStream 的图对象中: // Given the egoNetwork, load the graphX...最简单的方式是将这条边的两个端点的 vertex ID 连接起来.
可视化效果 编程语言 核心代码 准备在CSDN上写一个关于GraphX的专栏,这是第一篇文章。 ...本文介绍使用GraphX创建一张图并可视化的关键技术,创建好的图存储在Graph[VD,ED]对象中,可视化所使用的技术框架是第三方Java动态图形管理组件GraphStream。...可视化效果 在可视化结果中,使用标签分别在顶点和边的旁边标注了人物的姓名和人物之间的关系,如下图所示。 ? 编程语言 GraphX目前只支持Scala编程语言。...{SparkContext, SparkConf} import org.apache.spark.graphx._ import org.apache.spark.rdd.RDD import org.graphstream.graph...id.toString).asInstanceOf[SingleNode] node.addAttribute("ui.label",id +"\n"+person.name) } //加载边到可视化图对象中
借助Spark GraphX,我们用寥寥100行核心代码,在高配置的TDW-Spark集群上,只花了2个半小时,便完成了原来需要2天的全量共同好友计算。...这个计算貌似非常简单,但是当图的规模扩展到腾讯的级别:用户数(点)为十亿级别,关系数(边)为千亿级别时,那这个问题就一点都不简单了。...经过反复选择,我们还是选择了GraphX,主要原因有如下3个: 进展 虽然GraphX本身没什么进展,但是Spark本身的发展很快,从1.4到1.6版本,Spark Core在性能和稳定性上有了不少的提升...要发挥GraphX的最佳性能,最少要有128G以上的内存 主要原因有两个是: 节点复制——越小越浪费 GraphX使用了点切割的方式,这是一种用空间换时间的方法,通过将浪费一定的内存,将点和它的邻居放到一起...总结和展望 整个的优化过程,貌似风轻云淡,但是中间经过了反复调优,多次在0.1的抽样数据和1.0的全量数据之间切换,优化每一步的操作,将硬件和GraphX的性能压榨到极致,才最终得到这个结果。
GraphX GraphX 最初是伯克利AMP 实验室的一个分布式图计算框架项目,后来整合到Spark 中成为一个核心组件。...跟其他分布式图计算框架相比,GraphX 最大的优势是:在Spark 基础上提供了一栈式数据解决方案,可以高效地完成图计算的完整的流水作业。...GraphX 的核心抽象是Resilient Distributed Property Graph,一种点和边都带属性的有向多重图。...其中最关键的是Immutable(不变性)。逻辑上,所有图的转换和操作都产生了一个新图;物理上,GraphX 会有一定程度的不变顶点和边的复用优化,对用户透明。...划分策略的不同会影响到所需要缓存的Ghost 副本数量,以及每个EdgePartition 分配的边的均衡程度,需要根据图的结构特征选取最佳策略。
从零开始在本文中,我们将详细介绍如何在Python / pyspark环境中使用graphx进行图计算。...GraphX是Spark提供的图计算API,它提供了一套强大的工具,用于处理和分析大规模的图数据。通过结合Python / pyspark和graphx,您可以轻松地进行图分析和处理。...接下来的示例将展示如何配置Python脚本来运行graphx。...通过结合Python / pyspark和graphx,可以轻松进行图分析和处理。首先需要安装Spark和pyspark包,然后配置环境变量。...接着介绍了GraphFrames的安装和使用,包括创建图数据结构、计算节点的入度和出度,以及查找具有最大入度和出度的节点。
当前业界主流的大规模图计算系统主要有Facebook的Big Graph、Power graph、Data bricks的 Spark GraphX等,但这些系统并不都支持图挖掘、图表示学习、图神经网络的三大类型算法...Angel的架构,最上面是一个参数服务器,下面分别是PyTorch on Angel和Spark on Angel。图计算前期有繁锁的预处理,用户偏好Spark或者GraphX。...Angel将PS和Spark结合,整合Spark大数据能力和PS服务器能力,统一了图计算流程。PyTorch on Angel是为图神经网络而设计的,运行在Spark on Angel之上。...图神经网络最近发展迅速, 但大规模的图神经网络会遇到大数据问题,也会遇到机器学习问题. 将Angel和PyTorch结合起来,就可以同时应对大数据与机器学习问题....图计算任务的执行流程复杂,通常包括数据预处理, 如去除重复边、过滤异常点,图划分等。在某些场景下还会计算节点的特征、计算结点或边的权重/测度,如PageRank。另一些场景需要对图做拼接、生成等。
1 将sample.log的数据发送到Kafka中,经过Spark Streaming处理,将数据格式变为以下形式: commandid | houseid | gathertime | srcip...另一个队列中 分析 1 使用课程中的redis工具类管理offset 2 读取日志数据发送数据到topic1 3 消费主题,将数据的分割方式修改为竖线分割,再次发送到topic2 1.OffsetsWithRedisUtils...redis数据由Java的map转换为scala的map,数据格式为{key:[{partition,offset}]} jedis.hgetAll(key) .asScala...求所有的顶点 求所有的边 求所有的triplets 求顶点数 求边数 求机场距离大于1000的有几个,有哪些 按所有机场之间的距离排序(降序),输出结果 */ 代码: import org.apache.spark...{SparkConf, SparkContext} import org.apache.spark.graphx.
J Gonzalez在2012年8月博士毕业之后就去UC Berkeley 的AMPLab当博士后,搞Spark的GraphX去了。 ? 图 3.2 Joseph E....图 3.3 GraphLab和Spark的分布式性能比较[23] ? 图 3.4 GraphLab和GraphX的分布式性能比较[24] Joseph E....GraphX虽然没办法避免MapReduce框架在迭代计算中的局限性,但得益于Spark的全数据流程分析能力、内存计算和数据血缘能力,获得了长久的生命力,也是现在应用最为广泛的OLAP图计算框架。...图 3.5 MapReduce在迭代计算中的局限性[25] 图数据库包括Titan,JanusGraph和Hugegraph,也都可以外接Spark进行OLAP批量图计算任务。...Neo4j在他们写的书《Graph Algorithms: Practical Examples in Apache Spark and Neo4j》[26]里面将图算法分为三类:路径搜寻(Pathfinding
原创/朱季谦 按照官网的介绍,NebulaGraph Algorithm是一款基于GraphX 的 Spark 应用程序,通过提交 Spark 任务的形式,使用完整的算法工具对 NebulaGraph...通俗而言,就是基于NebulaGraph Algorithm,通过配置读取出存储在NebulaGraph的数据源,然后转换成Graphx图结构(具备顶点和边的数据集),再结合Spark Graphx提供的算法...在现实生活里,这两个子图就相当某个社区里的关系网,在Spark Graphx里,经常需要处理这类关系网的操作,那么,在一个图里如何得到各个子图的数据呢?...这时,就可以使用到Spark Graphx的connectedComponents函数,网上关于它的介绍,基本都是说它是Graphx三大图算法之一的连通组件。...二、案例说明 基于以上的图顶点和边数据,创建一个Graphx图—— val conf = new SparkConf().setMaster("local[*]").setAppName("graphx
领取专属 10元无门槛券
手把手带您无忧上云