首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas merge用法解析(用Excel的数据为例子)

Pandas merge用法解析(用Excel的数据为例子) 【知识点】 语法: 参数如下: left: 拼接的左侧DataFrame对象 right: 拼接的右侧DataFrame对象 on: 要加入的列或索引级别名称...如果未传递且left_index和right_index为False,则DataFrame中的列的交集将被推断为连接键。 left_on:左侧DataFrame中的列或索引级别用作键。...copy: 始终从传递的DataFrame对象复制数据(默认为True),即使不需要重建索引也是如此。...indicator:将一列添加到名为_merge的输出DataFrame,其中包含有关每行源的信息。..._merge是分类类型,并且对于其合并键仅出现在“左”DataFrame中的观察值,取得值为left_only,对于其合并键仅出现在“右”DataFrame中的观察值为right_only,并且如果在两者中都找到观察点的合并键

1.7K20

【Groovy】Xml 反序列化 ( 使用 XmlParser 解析 Xml 文件 | 删除 Xml 文件中的节点 | 增加 Xml 文件中的节点 | 将修改后的 Xml 数据输出到文件中 )

文章目录 一、删除 Xml 文件中的节点 二、增加 Xml 文件中的节点 三、将修改后的 Xml 数据输出到文件中 四、完整代码示例 一、删除 Xml 文件中的节点 ---- 在 【Groovy】Xml...反序列化 ( 使用 XmlParser 解析 Xml 文件 | 获取 Xml 文件中的节点和属性 | 获取 Xml 文件中的节点属性 ) 博客基础上 , 删除 Xml 文件中的节点信息 ; 下面是要解析的..."175cm") 三、将修改后的 Xml 数据输出到文件中 ---- 创建 XmlNodePrinter 对象 , 并调用该对象的 print 方法 , 传入 XmlParser 对象 , 可以将该...XmlParser 数据信息写出到文件中 ; // 将修改后的 Xml 节点输出到目录中 new XmlNodePrinter(new PrintWriter(new File("b.xml"))).print...File("a.xml") // 创建 Xml 文件解析器 def xmlParser = new XmlParser().parse(xmlFile) // 获取 xml 文件下的

6.2K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Python爬虫实战】从多类型网页数据到结构化JSON数据的高效提取策略

    本篇文章将深入探讨不同类型网页数据的解析方法,并以 JSON 数据为例,详细介绍结构化数据的提取步骤,帮助读者更好地理解并掌握网页数据的爬取技术。...以下是常见的数据类型及其相应的提取和解析策略。 (一)文本数据 文本数据是最常见的数据类型,包括网页上的文章、标题、段落、评论等。它通常是非结构化的,需要通过解析 HTML 或者 XML 来提取。...解析 获取行数据,解析 获取列数据。 可以使用 pandas 库将表格数据转换为 DataFrame 格式,便于后续处理。...层次结构:可以嵌套对象和数组,允许数据嵌套在多个层级中。 可读性强:相比于 XML,JSON 更加简洁,易于阅读和解析。...你可以递归地访问嵌套数据,或者将深度嵌套的部分先提取到局部变量中再操作。

    33810

    数据分析从零开始实战 (三)

    读写代码 import pandas as pd # 一个轻量的XML解析器 import xml.etree.ElementTree as ET import os """ 读入XML数据,...""" 以特定的嵌套格式将每一行编码成XML """ def xml_encode(row): # 第一步--输出record节点 xmlItem = [' 解析 (1)read_xml(xml_FileName)函数 功能:读入XML数据,返回pa.DataFrame 这里利用到了一个轻量级的XML解析器:xml.etree.ElementTree。...保存数据时用到了DataFrame对象的apply()方法,遍历内部每一行,第一个参数xml_encode指定了要应用到每一行记录上的方法,axis=1表示按行处理,默认值为0,表示按列处理。...(4)xml_encode(row)函数 功能:以特定的嵌套格式将每一行编码成XML 在写数据的过程我们会调用这个方法,对每行数据进行处理,变成XML格式。

    1.4K30

    AI 技术讲座精选:如何利用 Python 读取数据科学中常见几种文件?

    在归档文件格式中,你可以创建一个包含多个文件和元数据的文件。归档文件格式通常用于将多个数据文件放入一个文件中的过程。这么做是为了方便对这些文件进行压缩从而减少储存它们所需的存储空间。...通常,这个文本的形式是非结构的,而且也没有与元数据关联。txt 文件格式可以被任何程序读取。但是如果想通过计算机程序来解析它,并不是件容易的事。 让我们以一个文本文件为例。...和 XML 一样,HDF5 文件也具有自定义功能,它允许用户规定复杂的数据关系和依赖关系。 让我们以一个 HDF5 文件格式为例进行做简单的讲解。 ?...读取 HDF5 文件 你可以使用 pandas 来读取 HDF 文件。下面的代码可以将 train.h5 的数据加载到“t”中。...其中,每个帧又可以进一步分为帧头和数据块。我们称帧的排列顺序为码流。 mp3 的帧头通常标志一个有效帧的开端,数据块则包含频率和振幅这类(压缩过的)音频信息。

    5.1K40

    JSON数据解析实战:从嵌套结构到结构化表格

    本文以 Google Scholar 为目标,深入解析嵌套 JSON 数据,从海量文献信息中提取关键词、作者、期刊等内容。...解析嵌套 JSON 数据:部分数据以 JSON 格式嵌入到页面中,需要经过提取和解析后转换为结构化表格。数据结构化:将嵌套的数据转换为表格,便于后续数据分析和可视化处理。...undefined数据解析与表格构建undefined模拟 JSON 数据的解析过程,利用 pandas 构建结构化表格,让文献信息一目了然。...技术关系图谱的创意构建在项目深度调研中,单一的数据表往往难以全面展示各要素间的复杂关系。...总结通过本文,我们从代理 IP 设置、请求头定制,到嵌套 JSON 数据的解析,详细展示了如何将零散的爬虫数据转化为结构化表格,最终构建出直观的技术关系图谱。

    11910

    Pandas 2.2 中文官方教程和指南(十·一)

    如果为True -> 尝试解析索引。 如果[1, 2, 3] -> 尝试将列 1、2、3 分别解析为单独的日期列。...#### 数据转换 默认情况下 `convert_axes=True`、`dtype=True` 和 `convert_dates=True` 将尝试解析轴和所有数据为适当的类型,包括日期。...使用 lxml 作为解析器,您可以使用 XSLT 脚本展平嵌套的 XML 文档,该脚本也可以是字符串/文件/URL 类型。...例如,考虑芝加哥“L”列车的稍微嵌套的结构,其中 station 和 rides 元素将数据封装在各自的部分中。...使用下面的 XSLT,lxml 可以将原始的嵌套文档转换为更扁平的输出(如下所示,仅用于演示),以便更容易解析为 DataFrame: In [405]: xml = """<?

    35000

    干货:手把手教你用Python读写CSV、JSON、Excel及解析HTML

    这是个嵌套的、类似字典的结构,以逗号为分隔符,存储键值对;键与值之间以冒号分隔。JSON格式独立于具体平台(就像XML,我们将在 用Python读写XML文件介绍),便于平台之间共享数据。...怎么做 从XML文件直接向一个pandas DataFrame对象读入数据需要些额外的代码:这是由于XML文件有特殊的结构,需要针对性地解析。接下来的章节,我们会详细解释这些方法。..., data): ''' 以XML格式保存数据 ''' def xml_encode(row): ''' 以特定的嵌套格式将每一行编码成XML ''' # 读出和写入数据的文件名 r_filenameXML...首先引用需要的模块。xml.etree.ElementTree是一个轻量级XML解析器,我们用它来解析文件的XML结构。...05 用pandas解析HTML页面 尽管以前面介绍的格式保存数据是最常见的,我们有时还是要在网页表格中查找数据。数据的结构通常包含在 标签内。

    8.4K20

    在Python如何将 JSON 转换为 Pandas DataFrame?

    以下是从JSON字符串创建DataFrame的步骤:导入所需的库:import pandas as pdimport json将JSON字符串解析为Python对象:data = json.loads(...解析嵌套 JSON 数据在处理JSON数据时,我们经常会遇到嵌套的JSON结构。为了正确解析和展开嵌套的JSON数据,我们可以使用Pandas的json_normalize()函数。...以下是解析嵌套JSON数据的步骤:导入所需的库:import pandas as pdfrom pandas.io.json import json_normalize使用json_normalize(...)函数解析嵌套的JSON数据:df = json_normalize(data, 'nested_key')在上述代码中,data是包含嵌套JSON数据的Python对象,nested_key是要解析的嵌套键...我们还探讨了如何解析嵌套的JSON数据,并提供了一个从公开API获取JSON数据并转换为DataFrame的案例。最后,我们提供了一些常见的JSON数据清洗和转换操作。

    1.2K20

    ApacheCN 数据科学译文集 20211109 更新

    八、推断和数据分析 九、数字图像处理 Pandas 秘籍 零、前言 一、Pandas 基础 二、数据帧基本操作 三、开始数据分析 四、选择数据子集 五、布尔索引 六、索引对齐 七、分组以进行汇总,过滤和转换...八、将数据重组为整齐的表格 九、组合 Pandas 对象 十、时间序列分析 十一、Pandas,Matplotlib 和 Seaborn 的可视化 Pandas 学习手册中文第二版 零、前言 一、Pandas...与数据分析 二、启动和运行 Pandas 三、用序列表示单变量数据 四、用数据帧表示表格和多元数据 五、数据帧的结构操作 六、索引数据 七、类别数据 八、数值统计方法 九、存取数据 十、整理数据 十一...8 数据分析的高级工具 9 在 REDDIT 数据中寻找趋势 10 测量公众人物的 Twitter 活动 11 何去何从 附录 1 编写程序通过 API 获取网站的信息 2 通过解析网页直接获取哔哩某播主的详细信息...Python Python 数据科学本质论 零、前言 一、第一步 二、数据整理 三、数据管道 四、机器学习 五、可视化,见解和结果 六、社交网络分析 七、超越基础的深度学习 八、大数据和 Spark

    4.9K30

    构建自动车牌识别系统

    然后在对图像进行标记后,我们将进行数据预处理,在TensorFlow 2中构建和训练一个深度学习目标检测模型(Inception Resnet V2)。...打开之后,GUI给出指示,然后单击CreateRectBox并绘制如下所示的矩形框,然后将输出保存为XML。...标注时要注意,因为这个过程会直接影响模型的准确性。 从XML解析信息 完成标注过程后,现在我们需要进行一些数据预处理。 ? 由于标注的输出是XML,为了将其用于训练过程,我们需要处理格式数据。...现在,让我们看看如何使用Python解析信息。 我使用xml.etree python库来解析XML中的数据,并导入pandas和glob。首先使用glob获取在标记过程中生成的所有XML文件。...数据处理 这是非常重要的一步,在此过程中,我们将获取每张图像,并使用OpenCV将其转换为数组,然后将图像调整为224 x 224,这是预训练的转移学习模型的标准兼容尺寸。

    2.4K31

    如何通过Maingear的新型Data Science PC将NVIDIA GPU用于机器学习

    cuDF:数据帧操作 cuDF提供了类似Pandas的API,用于数据帧操作,因此,如果知道如何使用Pandas,那么已经知道如何使用cuDF。...数据帧转换为cuDF数据帧(但不建议这样做): import pandas as pd import cudf df = pd.DataFrame({'a': [0, 1, 2, 3],'b': [0.1..., 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(df) 也可以做相反的事情,将cuDF数据帧转换为pandas数据帧: import cudf...此数据帧使用大约15 GB的内存)训练XGBoost模型在CPU上花费1分钟46s(内存增量为73325 MiB) ,在GPU上仅花费21.2s(内存增量为520 MiB)。...RAPIDS工具为机器学习工程师带来了深度学习工程师已经熟悉的GPU处理速度的提高。为了生产使用机器学习的产品,需要进行迭代并确保拥有可靠的端到端流水线,并且使用GPU执行它们将有望改善项目输出。

    1.9K40

    创建DataFrame:10种方式任你选!

    本文介绍的是如何创建DataFrame型数据,也是pandas中最常用的数据类型,必须掌握的,后续的所有连载文章几乎都是基于DataFrame数据的操作。...数据,发现什么也没有输出;但是通过type()函数检查发现:数据是DataFrame类型 [008i3skNgy1gqfh1i23a1j30kg09qwf7.jpg] 2、创建一个数值为NaN的数据 df0...25 男 上海 小张 22 女 杭州 读取数据库文件创建 1、先安装pymysql 本文中介绍的是通过pymysql库来操作数据库,然后将数据通过pandas读取进来,首先要先安装下pymysql...它在pandas中是经常使用,本身就是多个Series类型数据的合并。 本文介绍了10种不同的方式创建DataFrame,最为常见的是通过读取文件的方式进行创建,然后对数据帧进行处理和分析。...希望本文能够对读者朋友掌握数据帧DataFrame的创建有所帮助。 下一篇文章的预告:如何在DataFrame中查找满足我们需求的数据

    4.7K30

    你必须知道的Pandas 解析json数据的函数-json_normalize()

    JSON对象列表 采用[]将JSON对象括起来,形成一个JSON对象的列表,JSON对象中同样会有多层{},也会有[]出现,形成嵌套列表 这篇文章主要讲述pandas内置的Json数据转换方法json_normalize...本文的主要解构如下: 解析一个最基本的Json- 解析一个带有多层数据的Json- 解析一个带有嵌套列表的Json- 当Key不存在时如何忽略系统报错- 使用sep参数为嵌套Json的Key设置分隔符...- 为嵌套列表数据和元数据添加前缀- 通过URL获取Json数据并进行解析- 探究:解析带有多个嵌套列表的Json json_normalize()函数参数讲解 |参数名|解释 |------ |data...为嵌套列表数据和元数据添加前缀 在3例的输出结果中,各列名均无前缀,例如name这一列不知是元数据解析得到的数据,还是通过student嵌套列表的的出的数据,因此为record_prefix和meta_prefix...students->前缀,为元数据添加meta->前缀,将嵌套key之间的分隔符修改为->,输出结果为: 7.

    3K20

    你必须知道的Pandas 解析json数据的函数

    JSON对象列表 采用[]将JSON对象括起来,形成一个JSON对象的列表,JSON对象中同样会有多层{},也会有[]出现,形成嵌套列表 这篇文章主要讲述pandas内置的Json数据转换方法json_normalize...本文的主要解构如下: 解析一个最基本的Json- 解析一个带有多层数据的Json- 解析一个带有嵌套列表的Json- 当Key不存在时如何忽略系统报错- 使用sep参数为嵌套Json的Key设置分隔符...- 为嵌套列表数据和元数据添加前缀- 通过URL获取Json数据并进行解析- 探究:解析带有多个嵌套列表的Json json_normalize()函数参数讲解 在进行代码演示前先导入相应依赖库,未安装...为嵌套列表数据和元数据添加前缀 在3例的输出结果中,各列名均无前缀,例如name这一列不知是元数据解析得到的数据,还是通过student嵌套列表的的出的数据,因此为record_prefix和meta_prefix...students->前缀,为元数据添加meta->前缀,将嵌套key之间的分隔符修改为->,输出结果为: 7.

    1.8K20

    《利用Python进行数据分析·第2版》第6章 数据加载、存储与文件格式6.1 读写文本格式的数据6.2 二进制数据格式6.3 Web APIs交互6.4 数据库交互6.5 总结

    6.1 读写文本格式的数据 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数。表6-1对它们进行了总结,其中read_csv和read_table可能会是你今后用得最多的。...表6-1 pandas中的解析函数 我将大致介绍一下这些函数在将文本数据转换为DataFrame时所用到的一些技术。...将数据写出到文本格式 数据也可以被输出为分隔符格式的文本。...pandas有一个内置的功能,read_html,它可以使用lxml和Beautiful Soup自动将HTML文件中的表格解析为DataFrame对象。...XML XML(Extensible Markup Language)是另一种常见的支持分层、嵌套数据以及元数据的结构化数据格式。

    7.4K60

    自动化测试如何解析excel文件?

    来源:http://www.51testing.com  前言 自动化测试中我们存放数据无非是使用文件或者数据库,那么文件可以是csv,xlsx,xml,甚至是txt文件,通常excel文件往往是我们的首选...()   print('所有数据组成的嵌套命名元组的列表:\n', namedtuple_value)   pe.write_cell(1, 2, 'Tc_title') xlrd   安装xlrd...,如果使用xlutils, 那么我们的excel文件需要以.xls 为后缀。...('所有的数据返回嵌套命名元组的列表:', pe.get_all_values_nametuple())   pe.write_value(0, 1, 3, 'test')   pandas   pandas...是一个做数据分析的库, 总是感觉在自动化测试中使用pandas解析excel文件读取数据有点大材小用,不论怎样吧,还是把pandas解析excel文件写一下把   我这里只封装了读,写的话我这有点小问题

    81820

    转载:【AI系统】计算图的控制流实现

    复用宿主语言以 PyTorch 为典型代表,支持控制流原语以 TensorFlow 为典型代表,源码解析的方式则以 MindSpore 为典型代表。...执行帧可以嵌套。嵌套的 while 循环在嵌套的执行帧中运行。...位于同一个计算帧中,嵌套的tf.while_loop对应嵌套的计算帧,位于不同计算帧中的算子,只要它们之间不存在数据依赖,有能够被运行时调度并发执行。...只要执行帧之间没有数据依赖关系,则来自不同执行帧的操作可以并行运行。...Exit:Exit 操作符将一个张量从一个执行帧返回给它的父执行帧。一个执行帧可以有多个 Exit 操作返回到父执行帧,每个操作都异步地将张量传回给父帧。

    7510
    领券