学习如何通过剪枝来使你的模型变得更小 ? 剪枝是一种模型优化技术,这种技术可以消除权重张量中不必要的值。这将会得到更小的模型,并且模型精度非常接近标准模型。...采用等稀疏修剪对整个模型进行剪枝 我们将上面的MSE与修剪整个模型得到的MSE进行比较。第一步是定义剪枝参数。权重剪枝是基于数量级的。这意味着在训练过程中一些权重被转换为零。...模型变得稀疏,这样就更容易压缩。由于可以跳过零,稀疏模型还可以加快推理速度。 预期的参数是剪枝计划、块大小和块池类型。 在本例中,我们设置了50%的稀疏度,这意味着50%的权重将归零。...比较从不同的剪枝参数获得的MSE是有用的,这样你就可以选择一个不会使模型性能变差的MSE。 比较模型大小 现在让我们比较一下有剪枝和没有剪枝模型的大小。我们从训练和保存模型权重开始,以便以后使用。...对于剪枝过的模型,tfmot.sparsity.keras.strip_pruning()用来恢复带有稀疏权重的原始模型。请注意剥离模型和未剥离模型在尺寸上的差异。
一、如何保存 Keras 模型? 1.保存/加载整个模型(结构 + 权重 + 优化器状态) 不建议使用 pickle 或 cPickle 来保存 Keras 模型。...你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含: 模型的结构,允许重新创建模型 模型的权重 训练配置项(损失函数,优化器) 优化器状态...只保存/加载模型的权重 如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。 请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。...model.save_weights('my_model_weights.h5') 假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中: model.load_weights('...my_model_weights.h5') 如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重: model.load_weights('my_model_weights.h5
然而,一旦模型成功运作,彼时使用它来对新数据生成预测就会更简单,计算成本也会更低。当下唯一的困难是将模型从其开发环境转移到应用程序产品中。.../my_model.h5 较旧版本的 Keras 需要在预训练模型中删除优化器权重。...如果从 GitHub 下载预训练模型,则下面这一脚本会检查并删除优化器权重。...Keras 中的 model.save() 命令可以让您保存模型架构和训练得到的权重。 Flask API 一旦模型被训练完成,之后使用它来生成预测就会简单得多。...导入的唯一模块就是 load_model,用它来读取 my_model.h5 并加载模型和权重。
我们可能会因为各种原因,不得不更换我们的域名,但旧的域名在搜索引擎上已经被收录过,具有一定的权重,如果我们贸然更换域名而不进行管理的话,那么以前的网站所拥有的权重将不复存在,如果旧域名的权重能转移到新域名那岂不美滋滋...注意:我们需要做的是全站301重定向,所以在我们更换域名后,一定要确保旧的站点是可以访问的,并且新的网站目录结构和链接要与旧的网站完全一致。...apache 使用 .htaccess 将旧域名 301 重定向到新域名 Options +FollowSymLinks RewriteEngine on RewriteRule (.*) https:...//www.newdomain.com/$1 [R=301,L] .htaccess一定是放在旧网站的根目录中,如果您的旧网站已经有该文件,直接修改即可 ngnix 推荐使用return指令,因为rewrite...使用rewrite,通过正则匹配所有的URI后再去掉开头第一个/(反斜线) rewrite ^/(.*)$ https://www.newdomain.com/$1; # 使用rewrite指令,不同的是通过
当然,你可以将整个项目放在GitHub上,但这只能给程序员看,如果你想给自己家里的老人看呢?GitHub肯定不行,所以我们想要的是将我们的深度学习模型部署成世界上任何人都轻易访问的Web应用程序。...除此之外,此文件将显示上面的表单。 当用户输入信息并点击submit(POST请求)时,如果信息是正确的,我们希望将输入转移到正确的函数以使用经过训练的RNN进行预测。这意味着要修改home() 。...用预训练的Keras模型进行预测 model参数是经过训练的Keras模型,其加载如下: from keras.modelsimport load_model import tensorflow as...Keras模型和参数,并对一个新的专利摘要进行预测。...结论 在本文中,我们了解了如何将经过训练的Keras深度学习模型部署为Web应用程序。这需要许多不同的技术,包括RNN,Web应用程序,模板,HTML,CSS,当然还有Python。
应用场景分为两种,一种是资源受限条件下寻找效果最高的模型,这种情况reward就直接定义为效果就行了,而资源的限制设定在了action空间里,就是上图伪代码做的事情。...这篇是做效果提升的,因此可以看到在很多数据集上效果都超过了之前的模型。 评价 感觉上和ENAS差别不是很大,就是搜索空间针对NLP任务做了一些扩展。此外搜索目标只是效果,并没有考虑到延时等条件。...最后训练一个(模型结构,准确率)的预测器,再维护一个(模型结构,目标设备,延时/FLOPs)的loopup table,用演化算法直接搜一个目标设备上最优的模型。...因为是帕累托最优,所以寻找的是小于限定延时/FLOPs情况下最佳效果的模型。 ? 实验 ? ? ? 相同延时的情况下效果会好很多。搜出结构之后再finetune会更好。...OFA和HAT的代码也都开源了,可以按照教程试一试,我试了在ImageNet上搜出一个比较好的模型还是非常快的。不考虑pretrain的时间,对于每个设备只需要几十秒就搜出来了。
成本 对于专有 LLM,你将按输入和输出 token 计费。每个 token 的价格将与你使用的模型的质量(即大小)相关。...最小化成本的策略重点是让更小的模型能够用于该任务,因为这些模型具有最高的吞吐量和最便宜的运行成本。 任务性能 任务性能是三个要求中最模糊的,但也是优化和改进范围最广的要求。...与其让一个小型开源模型承担过于复杂的任务,不如将问题分解为一个可行的子任务的逻辑流。...约束解码与控制流策略齐头并进,因为它使你能够通过将大型语言模型的响应约束为不同的分支选项,从而可靠地将其引向预先指定的路径。...通过降低用于模型权重的精度,可以在不显着损害其输出质量的情况下缩小模型大小(因此也缩小了其内存需求)。
keras中的主要数据结构是model(模型),它提供定义完整计算图的方法。通过将图层添加到现有模型/计算图,我们可以构建出复杂的神经网络。...Keras有两种不同的构建模型的方法: Sequential models Functional API 本文将要讨论的就是keras中的Sequential模型。...layers(图层),以下展示如何将一些最流行的图层添加到模型中: 卷积层 model.add(Conv2D(64, (3, 3), activation='relu')) 最大池化层 model.add...我们可以尝试修改迭代次数,看看不同迭代次数下得到的权重值。 这段例子仅仅作为一个简单的示例,所以没有做模型评估,有兴趣的同学可以构建测试数据自己尝试一下。...在某些特别的场合,可能需要更复杂的模型结构,这时就需要Functional API,在后面的教程中,我将探讨Functional API。
缺省情况下,Windows上的docker的文件存放在user的"AppData\Local\Docker"下。...C:\Users\liuga\AppData\Local\Docker\wslwsl\data\ext4.vhdx 下这个比较大的虚拟机文件镜像。...wsl\distro 现在想把上面wsl目录下的文件移动到D:\data\docker下,参考网上,按照如下步骤进行。...wsl\distro\ D:\data\docker\wsl\docker-desktop.tar执行结果如下:图片启动Docker Desktop后,图片=========基本上都是参考下面这个url的。
项目整体把握 这个YOLOV3的剪枝工程是基于U版的YOLOV3的,也就是说我们可以直接将U版训练的YOLOV3模型加载到这里进行剪枝。...接着联合训练网络权重和这些缩放因子,最后将小缩放因子的通道直接移除,微调剪枝后的网络,特别地,目标函数被定义为: ?...(pruned_model) # 拷贝一份原始模型的参数 compact_module_defs = deepcopy(model.module_defs) # 遍历需要剪枝的CBL模块,将通道数设置为剪枝后的通道数...return mask 还有prune_model_keep_size函数,这个函数将原始模型利用我们刚获得的每个CBL模块的通道保留状态值对每个层的权重进行更新,包括卷积层,BN层和LeakyReLU...因为是通道剪枝,一个通道对应着(w,h)这个矩形 conv_sum = next_conv.weight.data.sum(dim=(2, 3)) # 将卷积层的权重和激活值想乘获得剪枝后的每个通道的偏执
我们都知道,如果希望将 http 的访问自动切换到 https ,其实有多种方法可以去做。 比如说在 DNS 服务器上直接配置。 主要目的就是让网站只支持 https 的方法。...Nginx 的配置方法 在 Nginx 的虚拟主机配置文件中,只需要下面的 2 句话就可以了。...http 到 https 的重定向了。...Listen 80: 这个定义的是将所有的 HTTP 80 端口的流量进行转换 Server_name _;:这个将会是针对所有的主机名,你也可以指定特定的主机名 Return 301::这个告诉浏览器或者搜索引擎这个重定向是永久的重定向...https://$host$request_uri: 这个参数配置的是重定向的的目标地址,如果你只是希望换行协议的话,就直接使用上面的配置就行。
幸运的是,在移动应用方面,有很多工具开发成可以简化深度学习模型的部署和管理。在这篇文章中,我将阐释如何使用 TensorFlow mobile 将 PyTorch 和 Keras 部署到移动设备。...如果你使用的是 Keras,你可以跳到 “将 Keras 模式转成 TensorFlow 模式”章节。 首先我们要做的是将我们的 PyTorch 模式参数转成 Keras 中的同等参数。...("squeezenet.h5") 上面是已经转好权值的,你所需要做的是将 Keras 模型保存为 squeezenet.h5。...将 Keras 转成 TensorFlow 模式 到这一步,你已经有了 Keras 模式,无论是从 PyTorch 转化而来的还是直接用 Keras 训练而获得的。...你可以在这儿下载预训练的 Keras Squeezenet 模式。下一步是将我们整个的模型架构和权值转成可运行的 TensorFlow 模型。
我们开始看4月的新论文了,这是来自北京大学人工智能研究所、北京大学智能科学与技术学院的研究人员发布的Principal Singular Values and Singular Vectors Adaptation...PiSSA和LoRA一样,都是基于这样的前提:对模型参数的改变会形成一个低秩矩阵。 这种方法通过将模型中的矩阵表示为两个可训练矩阵的乘积,辅以一个用于错误校正的残差矩阵,优化了紧凑的参数空间。...PiSSA与LoRA的架构相一致,继承了诸如可训练参数减少、轻松部署等好处。但是与LoRA不同,使用PiSSA进行微调的过程与完整模型过程相似,会避免无效的梯度步骤和次优结果。...在LLaMA 2-7B、Mistral-7B-v0.1和Gemma-7B模型的多个任务的比较实验中,PiSSA凭借卓越的表现脱颖而出。以主奇异值和向量初始化的微调适配器产生了更好的结果。...论文中将奇异值分解应用于预训练模型的权重矩阵,以提取主要成分。然后使用这些成分来初始化一个名为PiSSA的适配器。微调PiSSA在开始阶段可以密切复制完整模型微调的效果,同时保持良好的参数效率。
然而,对于许多人来说,理解这些大模型的内部机制,尤其是它们的权重(weights),仍然是一个挑战。在这篇文章中,我们将深入探讨大模型的权重及其重要性。 什么是大模型权重?...权重的重要性 权重在模型中的作用类似于人类大脑中的神经连接强度。不同的权重组合让模型能够识别和分类各种复杂的模式。...例如,在图像识别任务中,模型通过调整权重来识别图像中的边缘、形状和颜色;在自然语言处理任务中,模型通过权重来理解单词之间的关系和上下文。 权重的初始化 在训练模型之前,权重需要被初始化。...结论 大模型权重是机器学习模型中至关重要的组成部分。通过理解和调整这些权重,我们能够构建出功能强大、性能优异的模型。尽管权重的概念可能看似复杂,但它们实际上是模型学习和推理能力的核心。...随着技术的不断进步,对大模型权重的理解和应用将继续推动人工智能领域的发展。
文章转自Hugging face预训练模型 Hugging face简介 Hugging face是一个专注于NLP的公司,拥有一个开源的预训练模型库Transformers ,里面囊括了非常多的模型例如...BERT GPT 等 模型库 官网的模型库的地址如下:https://huggingface.co/models ?...使用Windows模型保存的路径在C:\Users\[用户名]\.cache\torch\transformers\目录下,根据模型的不同下载的东西也不相同 使用Linux模型保存的路径在~/.cache...存在的问题 这些前提是你的电脑有网络可以直接使用代码下载相应的模型文件,但是问题是有些机器是没有外网连接权限或者下载速度非常慢。...这时候就需要把模型文件下载后在导入代码中,还是以刚才的 hfl/chinese-xlnet-base模型为例,直接在官网搜索模型,点击进入模型的详情界面 ?
的复现与解读,新手博主,边学边记,以便后续温习,或者对他人有所帮助 概述 深度学习神经网络在 Python 中很容易使用 Keras 创建和评估,但您必须遵循严格的模型生命周期。...在这篇文章中,您将了解创建、训练和评估Keras中长期记忆(LSTM)循环神经网络的分步生命周期,以及如何使用训练有素的模型进行预测。...; 如何将所有连接在一起,在 Keras 开发和运行您的第一个 LSTM 循环神经网络。...它将我们定义的简单层序列转换为一系列高效的矩阵转换,其格式旨在根据 Keras 的配置方式在 GPU 或 CPU 上执行。 将编译视为网络的预计算步骤。定义模型后始终需要它。...这将定义在一轮训练内更新权重。这也是一种效率优化,确保一次不会将太多的输入数据加载到内存中。
因此,有一个可靠的方法来评估神经网络和深度学习模型的性能至关重要。 在这篇文章中,你将学到使用Keras评估模型性能的几种方法。 让我们开始吧。 ?...因此,你需要有一个强大的测试工具,可以让你在不可见的数据上估计给定配置的性能,并可靠地将性能与其他配置进行比较。 数据拆分 大量的数据和复杂的模型需要很长的训练时间。...它为未知数据模型性能提供了可靠的评估。它通过将训练数据集分为k个子集,推出一个子集做测试集,剩下的子集轮流与它比较来训练模型。重复这个过程直到所有数据集都曾成为验证数据集。...最后将所有模型的性能评估平均。 交叉验证通常不用于评估深度学习模型,因为计算代价更大。例如k-折交叉验证通常使用5或10次折叠。因此,必须构建和评估5或10个模型,大大增加了模型的评估时间。...通过将“verbose=0”传递给模型上的fit()函数和evaluate()函数,关闭每个周期的详细输出。 打印每个模型的性能,并存储。
将Keras权值矩阵保存为简短的动画视频,从而更好地理解你的神经网络模型是如何学习的。下面是第一个LSTM层的例子,以及一个经过一个学习周期训练的6级RNN模型的最终输出层。...它公开了一个可以在任何模型fit(.)方法中包含的Keras回调函数。...Keras模型和一个output_directory,可以定期地保存权值图像。...在默认情况下,keras_weight_animator将每100个批处理的层权值以PNGs格式保存在名为epoch_XXX-layer_NAME-weights_YY.的文件夹中的output_directory...lil项目的目标是编写一个快速的工具,让我能够更好地理解在各种神经网络中权重是如何变化的。
基本思路 大家好,今天给大家分享一下如何把Keras框架训练生成模型部署到OpenVINO平台上实现推理加速。...要把Keras框架训练生成的h5模型部署到OpenVINO上,有两条技术路线: 选择一: 把预训练权重文件h5转换pb文件,然后再转为OpenVINO可以解析的IR文件 选择二: 把预训练权重文件h5转为...怎么从Keras的h5权重文件到ONNX格式文件,我还是很白痴的存在,但是我相信ONNX格式生态已经是很完善了,支持各种转ONNX格式,所以我搜索一波发现,github上有个很好用的工具Keras2ONNX...然后我从github上找了个Keras全卷积语义分割网络的源码库,下载了预训练模型,通过下面的几行代码完成了从h5权重模型文件到ONNX格式文件的转换 # Load model and weights...这里唯一需要注意的是,Keras转换为ONNX格式模型的输入数据格式是NHWC而不是OpenVINO预训练库中模型的常见的输入格式NCHW。运行结果如下 ?
0.完整代码 下面一段代码实现了2个功能: 1.用keras库编程实现拟合线性方程的回归模型; 2.对比了4种优化器的性能。...from keras.models import Sequential from keras.layers import Dense import numpy as np from keras import...__class__, w_error, b_error)) 上面一段代码的运行结果如下: X[:5]: [ 2. 4. 6. 8. 10.]...'keras.optimizers.Adagrad'>, w误差:0.0046, b误差:0.3051 epochs:200, 优化器种类:keras.optimizers.Adadelta...1.结论 对于线性方程的回归模型,使用Adam优化器能够得到不错的拟合效果。
领取专属 10元无门槛券
手把手带您无忧上云