首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

将时间字符串格式设置为100ms - Python

在Python中,可以使用datetime模块来处理时间和日期。要将时间字符串格式设置为100ms,可以按照以下步骤进行操作:

  1. 导入datetime模块:
代码语言:txt
复制
import datetime
  1. 创建一个时间字符串:
代码语言:txt
复制
time_str = "2022-01-01 12:00:00"
  1. 将时间字符串转换为datetime对象:
代码语言:txt
复制
time_obj = datetime.datetime.strptime(time_str, "%Y-%m-%d %H:%M:%S")
  1. 使用strftime方法将时间格式化为100ms的字符串:
代码语言:txt
复制
formatted_time = time_obj.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]

在上述代码中,%f表示毫秒,[:-3]用于去除最后的三位小数位,以满足100ms的要求。

完整的代码示例如下:

代码语言:txt
复制
import datetime

time_str = "2022-01-01 12:00:00"
time_obj = datetime.datetime.strptime(time_str, "%Y-%m-%d %H:%M:%S")
formatted_time = time_obj.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]

print(formatted_time)

输出结果为:

代码语言:txt
复制
2022-01-01 12:00:00.000

这样,你就成功将时间字符串格式设置为100ms了。

推荐的腾讯云相关产品:腾讯云函数(云函数是事件驱动的无服务器计算服务,可帮助您在云端运行代码而无需购买和管理服务器。您只需编写并上传代码,腾讯云函数即可为您提供弹性、高可用的计算资源。)。

腾讯云函数产品介绍链接地址:https://cloud.tencent.com/product/scf

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 海量数据相似度计算之simhash和海明距离

    通过 采集系统 我们采集了大量文本数据,但是文本中有很多重复数据影响我们对于结果的分析。分析前我们需要对这些数据去除重复,如何选择和设计文本的去重算法?常见的有余弦夹角算法、欧式距离、Jaccard相似度、最长公共子串、编辑距离等。这些算法对于待比较的文本数据不多时还比较好用,如果我们的爬虫每天采集的数据以千万计算,我们如何对于这些海量千万级的数据进行高效的合并去重。最简单的做法是拿着待比较的文本和数据库中所有的文本比较一遍如果是重复的数据就标示为重复。看起来很简单,我们来做个测试,就拿最简单的两个数据使用Apache提供的 Levenshtein for 循环100w次计算这两个数据的相似度。代码结果如下:

    02

    【备战蓝桥杯】如何使用Python 内置模块datetime去计算我与CSDN相遇的天数

    #mermaid-svg-zGLqSFRpGlvyy4qs {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-zGLqSFRpGlvyy4qs .error-icon{fill:#552222;}#mermaid-svg-zGLqSFRpGlvyy4qs .error-text{fill:#552222;stroke:#552222;}#mermaid-svg-zGLqSFRpGlvyy4qs .edge-thickness-normal{stroke-width:2px;}#mermaid-svg-zGLqSFRpGlvyy4qs .edge-thickness-thick{stroke-width:3.5px;}#mermaid-svg-zGLqSFRpGlvyy4qs .edge-pattern-solid{stroke-dasharray:0;}#mermaid-svg-zGLqSFRpGlvyy4qs .edge-pattern-dashed{stroke-dasharray:3;}#mermaid-svg-zGLqSFRpGlvyy4qs .edge-pattern-dotted{stroke-dasharray:2;}#mermaid-svg-zGLqSFRpGlvyy4qs .marker{fill:#333333;stroke:#333333;}#mermaid-svg-zGLqSFRpGlvyy4qs .marker.cross{stroke:#333333;}#mermaid-svg-zGLqSFRpGlvyy4qs svg{font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;}#mermaid-svg-zGLqSFRpGlvyy4qs .label{font-family:"trebuchet ms",verdana,arial,sans-serif;color:#333;}#mermaid-svg-zGLqSFRpGlvyy4qs .cluster-label text{fill:#333;}#mermaid-svg-zGLqSFRpGlvyy4qs .cluster-label span{color:#333;}#mermaid-svg-zGLqSFRpGlvyy4qs .label text,#mermaid-svg-zGLqSFRpGlvyy4qs span{fill:#333;color:#333;}#mermaid-svg-zGLqSFRpGlvyy4qs .node rect,#mermaid-svg-zGLqSFRpGlvyy4qs .node circle,#mermaid-svg-zGLqSFRpGlvyy4qs .node ellipse,#mermaid-svg-zGLqSFRpGlvyy4qs .node polygon,#mermaid-svg-zGLqSFRpGlvyy4qs .node path{fill:#ECECFF;stroke:#9370DB;stroke-width:1px;}#mermaid-svg-zGLqSFRpGlvyy4qs .node .label{text-align:center;}#mermaid-svg-zGLqSFRpGlvyy4qs .node.clickable{cursor:pointer;}#mermaid-svg-zGLqSFRpGlvyy4qs .arrowheadPath{fill:#333333;}#mermaid-svg-zGLqSFRpGlvyy4qs .edgePath .path{stroke:#333333;stroke-width:2.0px;}#mermaid-svg-zGLqSFRpGlvyy4qs .flowchart-link{stroke:#333333;fill:none;}#mermaid-svg-zGLqSFRpGlvyy4qs .edgeLabel{background-color:#e8e8e8;text-align:center;}#mermaid-svg-zGLqSFRpGlvyy4qs .edgeLabel rect{opacity:0.5;background-color:#e8e8e8;fill:#e8e8e8;}#mermaid-svg-zGLqSFRpGlvyy4qs .cluster rect{fill:#ffffde;stroke:#aaaa33;stroke-width:1px;}#mermaid-svg-zGLqSFRpGlvyy4qs .clust

    01
    领券