第十章主要讲解的数据聚合与分组操作。对数据集进行分类,并在每一个组上应用一个聚合函数或者转换函数,是常见的数据分析的工作。 本文结合pandas的官方文档整理而来。 ?...groupby机制 组操作的术语:拆分-应用-联合split-apply-combine。分离是在特定的轴上进行的,axis=0表示行,axis=1表示列。...分组键 分组键可以是多种形式,并且键不一定是完全相同的类型: 与需要分组的轴向长度一致的值列表或者值数组 DataFrame列名的值 可以在轴索引或索引中的单个标签上调用的函数 可以将分组轴向上的值和分组名称相匹配的字典或者...Series 特点 分组键可以是正确长度的任何数组 通用的groupby方法是size,返回的是一个包含组大小信息的Series 分组中的任何缺失值将会被排除在外 默认情况下,groupby是在axis...可以将函数传递给aggregate或者agg方法 ?
然后,将一个函数应用(apply)到各个分组并产生一个新值。最后,所有这些函数的执行结果会被合并(combine)到最终的结果对象中。结果对象的形式一般取决于数据上所执行的操作。...关键技术:可以将定义的字典传给aroupby,来构造数组,也可以直接传递字典。...关键技术: groupby函数和agg函数的联用。在我们用pandas对数据进 行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。...并且一次应用多个函数。 关键技术:对于自定义或者自带的函数都可以用agg传入,一次应用多个函数。传入函数组成的list。所有的列都会应用这组函数。...关键技术:如果传给apply的函数能够接受其他参数或关键字,则可以将这些内容放在函数名后面一并传入: 【例15】在apply函数中设置禁止分组键。
读取数据集 本次演示使用Kaggle上提供的客户流失数据集[1]。 让我们从将csv文件读取到pandas DataFrame开始。...13.通过groupby应用多个聚合函数 agg函数允许在组上应用多个聚合函数。函数列表作为参数传递。 df[['Geography','Gender','Exited']]....14.将不同的汇总函数应用于不同的组 我们不必对所有列都应用相同的函数。例如,我们可能希望查看每个国家/地区的平均余额和流失的客户总数。 我们将传递一个字典,该字典指示哪些函数将应用于哪些列。...如果我们将groupby函数的as_index参数设置为False,则组名将不会用作索引。 16.带删除的重置索引 在某些情况下,我们需要重置索引并同时删除原始索引。...在计算元素的时间序列或顺序数组中的变化百分比时很有用。 ? 从第一元素(4)到第二元素(5)的变化为%25,因此第二个值为0.25。
在本节中,我们将探讨 Pandas 中的聚合,从类似于我们在 NumPy 数组中看到的简单操作,到基于groupby概念的更复杂的操作。...“应用”步骤涉及计算单个组内的某些函数,通常是聚合,转换或过滤。 “组合”步骤将这些操作的结果合并到输出数组中。...-应用-组合操作可以使用DataFrame的groupby()方法计算,传递所需键列的名称: df.groupby('key') # pandas.core.groupby.DataFrameGroupBy...分组上的迭代 GroupBy对象支持分组上的直接迭代,将每个组作为Series或DataFrame返回: for (method, group) in planets.groupby('method')...A 0 1.5 B 1 2.5 C 2 3.5 另一个有用的方案是传递字典,将列名称映射到要应用于该列的操作: df.groupby('key').aggregate({'data1': 'min',
在本章中,您将学习如何: 使用一个或多个键(以函数、数组或 DataFrame 列名的形式)将 pandas 对象分成片段 计算组摘要统计信息,如计数、均值或标准差,或用户定义的函数 应用组内转换或其他操作...完成此操作后,将应用一个函数到每个组,生成一个新值。最后,所有这些函数应用的结果将合并成一个结果对象。结果对象的形式通常取决于对数据的操作。请参见图 10.1 以查看简单组聚合的模拟。...如果您将一个接受其他参数或关键字的函数传递给apply,则可以在函数之后传递这些参数: In [86]: tips.groupby(["smoker", "day"]).apply(top, n=1,...在某些应用程序中,可能会有多个数据观测值落在特定的时间戳上。...[280]: corr.plot() 图 11.9:与标普 500 的六个月回报相关性 用户定义的移动窗口函数 rolling和相关方法上的apply方法提供了一种方法,可以在移动窗口上应用自己创建的数组函数
对数据集进行分组并对各组应用一个函数(无论是聚合还是转换),通常是数据分析工作中的重要环节。在将数据集加载、融合、准备好之后,通常就是计算分组统计或生成透视表。...在本章中你将会看到,由于Python和pandas强大的表达能力,我们可以执行复杂得多的分组运算(利用任何可以接受pandas对象或NumPy数组的函数)。...在本章中,你将会学到: 使用一个或多个键(形式可以是函数、数组或DataFrame列名)分割pandas对象。 计算分组的概述统计,比如数量、平均值或标准差,或是用户定义的函数。...然后,将一个函数应用(apply)到各个分组并产生一个新值。最后,所有这些函数的执行结果会被合并(combine)到最终的结果对象中。结果对象的形式一般取决于数据上所执行的操作。...', 'e': 'red', 'f' : 'orange'} 现在,你可以将这个字典传给groupby,来构造数组,但我们可以直接传递字典(我包含了键“f”来强调,存在未使用的分组键是可以的): In
也就是说,它们将多个元素组合为一个值: In [257]: ar=np.arange(1,5) ar.prod() Out[257]: 24 在多维数组的情况下,我们可以使用axis参数指定是要按行还是按列应用约简运算符...将get_level_values函数与适当的参数一起应用将为索引的每个级别生成标签列表: In [962]: mIndex.get_level_values(0) Out[962]: Index([u...五、Pandas 的操作,第二部分 – 数据的分组,合并和重塑 在本章中,我们解决了在数据结构中重新排列数据的问题。 我们研究了各种函数,这些函数使我们能够通过在实际数据集上利用它们来重新排列数据。...为了进一步按国家和俱乐部划分胜利,我们在应用size()和sort()之前应用多列groupby函数: In [106]: winnersGrp =uefaDF.groupby(['Nation','Winners...总结 在本章中,我们看到了各种方法来重新排列 Pandas 中的数据。 我们可以使用pandas.groupby运算符和groupby对象上的关联方法对数据进行分组。
序列就像一维 NumPy 数组,因为我们可以一次在所有元素上执行算术运算。...分组 为了在pandas中进行分组。 我们使用.groupby()方法。...应用 pandas序列包含.apply()方法,它接受一个函数并将其应用于序列中的每个值。...但在处理文本数据时,在使用pandas内置的字符串操作函数通常会更快。...通过在pandas文档中查看绘图,我们了解到pandas将DataFrame的一行中的列绘制为一组条形,并将每列显示为不同颜色的条形。 这意味着letter_dist表的透视版本将具有正确的格式。
实际上分组后的数据对象 GroupBy 类似 Series 与 DataFrame,是 pandas 提供的一种对象。...freq的可选参数有: freq 参数传入的参数除了上述这种形式,还可以在基础的时间频率的基础上加一些数字,例如’4H’(Putting an integer before the base...有些类似,主要应用于沿某一个轴进行拼接 combine 方法主要用来对两个表的数据进行 combine,具体 combine 的方法依据传递的函数的返回值 合并数据 纵向合并数据表:pandas.append...,在自定义函数时,我们使用agg时默认聚合函数的输入是一个数组,而apply的聚合函数的输入参数是一个DataFrame,我想这也一定程度上解释了为什么apply函数会更常用一些。...窗口函数 在实际应用过程中,我们可能会存在对整个 df 的局部数据进行统计分析的场景,这时就需要用到所谓的“窗口函数”,可以理解为在整体数据集上创建窗口来进行运算,pd 中提供的几种窗口函数有: rolling
分组时将df的行索引与 Numpy 数组的索引相匹配。...').agg(np.mean) # 调用np.mean()函数,相当于每组记录看成一个Numpy数组,agg对数组应用特定的函数 # df.groupby('team').agg('mean')...应用于分组:GroupBy.apply的使用 apply函数的功能更为强大,它也要求参数是函数。...分组后应用apply函数,其实是在 split 得到的每一个 DataFrame 对象上应用指定的函数(分组是先 split 再 apply)。...,在调用函数的同时还可以给它传递参数(agg也可以通过args给函数传参数) 示例:求每一组特定列的前几名 排序操作不是聚合,聚合是返回1个标量,排序会返回多个值,因此只能用apply而不能用agg。
12.Groupby 函数 Pandas Groupby 函数是一个多功能且易于使用的功能,可帮助获取数据概述。它使浏览数据集和揭示变量之间的基本关系更加容易。 我们将做几个组比函数的示例。...df[['Geography','Gender','Exited']].groupby(['Geography','Gender']).mean() 13.Groupby与聚合函数结合 agg 函数允许在组上应用多个聚合函数...,函数的列表作为参数传递。...df[['Geography','Gender','Exited']].groupby(['Geography','Gender']).agg(['mean','count']) 14.对不同的群体应用不同的聚合函数...在计算时间序列或元素顺序数组中更改的百分比时,它很有用。
pandas提供了比较灵活的groupby分组接口,同时我们也可以使用pivot_table进行透视处理。 1.分组 分组函数groupby,对某列数据进行分组,返回一个Groupby对象。 ?...获取datafram数据 size()方法可以获取各分组的大小 ? 获取分组大小 遍历分组 ? 遍历分组 [[]]和[]在返回结果上的区别 ?...自由选择返回结果类型 有时候,我们可以通过传递函数进行分组,简化代码 ? 使用函数进行分组 2.聚合 常见的聚合函数如下: 计算组的平均值 ? 演示数据 简单的分组聚合操作 ?...values:要汇总的一列或一列列表。 index:与数据或它们的列表具有相同长度的列,Grouper,数组。在数据透视表索引上进行分组的键。如果传递了数组,则其使用方式与列值相同。...columns:与数据或它们的列表具有相同长度的列,Grouper,数组。在数据透视表列上进行分组的键。如果传递了数组,则其使用方式与列值相同。
刚开始学习pandas时要记住所有常用的函数和方法显然是有困难的,所以在Dataquest(https://www.dataquest.io/)我们主张查找pandas参考资料(http://pandas.pydata.org...) 从一列返回一组对象的值 df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1)[col2] 返回col2中的值的平均值,按col1中的值分组(平均值可以用统计部分中的几乎任何函数替换...(col1).agg(np.mean) 查找每个唯一col1组的所有列的平均值 data.apply(np.mean) 在每个列上应用函数 data.apply(np.max,axis=1) 在每行上应用一个函数...) df1.join(df2,on=col1,how='inner') SQL类型的将df1中的列与df2上的列连接,其中col的行具有相同的值。...可以是“左”,“右”,“外”,“内”连接 统计 以下这些都可以应用于一个数组。
注意 使用 UDF 进行聚合通常比在 GroupBy 上使用 pandas 内置方法性能较差。考虑将复杂操作拆分为一系列利用内置方法的操作链。...cat 18 dog 40 ```### 一次应用多个函数 在分组的`Series`上,您可以将函数列表或字典传递给`SeriesGroupBy.agg()`,输出一个...注意 使用 UDF 进行聚合通常比在 GroupBy 上使用 pandas 内置方法性能更低。考虑将复杂操作分解为一系列利用内置方法的操作。...cat 18 dog 40 一次应用多个函数 在分组的Series上,您可以将函数列表或字典传递给SeriesGroupBy.agg(),输出一个 DataFrame: In...因此,如果聚合函数的结果只需要在一列(这里是colname)上,可以在应用聚合函数之前对其进行过滤。
在数据仓库中,最好的方法是使用所谓的包含不同值得维表(Dimension Table),将主要的参数存储为引用维表整数键: In [15]: values = pd.Series([0, 1, 0, 0...不同值得数组称为分类、字典或数据级。本书中,我们使用分类的说法。表示分类的整数值称为分类编码或简单地称为编码。 分类表示可以在进行分析时大大的提高性能。你也可以在保持编码不变的情况下,对分类进行转换。...分类数组可以包括任意不可变类型。 用分类进行计算 与非编码版本(比如字符串数组)相比,使用pandas的Categorical有些类似。某些pandas组件,比如groupby函数,更适合进行分类。...高级应用 尽管我们在第10章已经深度学习了Series和DataFrame的Groupby方法,还有一些方法也是很有用的。...在前面的例子中,我们不能使用load_data的结果,直到它被赋值给临时变量df。为了这么做,assign和许多其它pandas函数可以接收类似函数的参数,即可调用对象(callable)。
它包含纽约警方2016年收到的与“喧闹音乐/派对”相关的噪音投诉电话,让我们来看看在纽约哪里玩得开心。 为了方便起见,已经将数据集上传到Github上,你可以直接用pandas读取文件。...pandas中的SUMIF 使用布尔索引 要查找Manhattan区的电话总数。布尔索引是pandas中非常常见的技术。本质上,它对数据框架应用筛选,只选择符合条件的记录。...Pandas中的SUMIFS SUMIFS是另一个在Excel中经常使用的函数,允许在执行求和计算时使用多个条件。 这一次,将通过组合Borough和Location列来精确定位搜索。...使用groupby()方法 如果对所有的Borough和LocationType组合感兴趣,仍将使用groupby()方法,而不是循环遍历所有可能的组合。只需将列名列表传递给groupby函数。...(S),虽然这个函数在Excel中不存在 mode()——将提供MODEIF(S),虽然这个函数在Excel中不存在 小结 Python和pandas是多才多艺的。
标签:Python与Excel, pandas 在Python中,pandas groupby()函数提供了一种方便的方法,可以按照我们想要的任何方式汇总数据。...实际上,groupby()函数不仅仅是汇总。我们将介绍一个如何使用该函数的实际应用程序,然后深入了解其后台的实际情况,即所谓的“拆分-应用-合并”过程。...图3 实际上,我们可以使用groupby对象的.agg()方法将上述两行代码组合成一行,只需将字典传递到agg()。字典键是我们要处理的数据列,字典值(可以是单个值或列表)是我们要执行的操作。...现在,你已经基本了解了如何使用pandas groupby函数汇总数据。下面讨论当使用该函数时,后台是怎么运作的。...Pandas groupby:拆分-应用-合并的过程 本质上,groupby指的是涉及以下一个或多个步骤的流程: Split拆分:将数据拆分为组 Apply应用:将操作单独应用于每个组(从拆分步骤开始)
数据科学家通常将大部分时间花在探索和预处理数据上。当谈到数据分析和理解数据结构时,Pandas value_counts() 是最受欢迎的函数之一。该函数返回一个包含唯一值计数的系列。...生成的Series可以按降序或升序排序,通过参数控制包括或排除NA。 在本文中,我们将探讨 Pandas value_counts() 的不同用例。您将学习如何使用它来处理以下常见任务。...1、默认参数 Pandas value_counts() 函数返回一个包含唯一值计数的系列。...与 Pandas cut() 函数类似,我们可以将整数或列表传递给 bin 参数。...() 应用于 Pandas Series,在 Pandas DataFrame 中有一个等效的方法。
数据科学家通常将大部分时间花在探索和预处理数据上。当谈到数据分析和理解数据结构时,Pandas value_counts() 是最受欢迎的函数之一。该函数返回一个包含唯一值计数的系列。...生成的Series可以按降序或升序排序,通过参数控制包括或排除NA。 在本文中,我们将探讨 Pandas value_counts() 的不同用例。您将学习如何使用它来处理以下常见任务。...DataFrame 9、应用于DataFrame 1、默认参数 Pandas value_counts() 函数返回一个包含唯一值计数的系列。...与 Pandas cut() 函数类似,我们可以将整数或列表传递给 bin 参数。...) 应用于 Pandas Series,在 Pandas DataFrame 中有一个等效的方法。
() 2.3.1.1 分组操作 pandas中使用groupby()方法根据键将原数据拆分为若干个分组。...,又接收自定义函数,甚至可以同时运用多个方法或函数,或给各列分配不同的方法或函数,能够对分组应用灵活的聚合操作。...在使用agg方法中,还经常使用重置索引+重命名的方式: # 初始化分组DF import pandas as pd df_obj = pd.DataFrame({'a': [0, 1, 2, 3, 4...apply(func, *args, **kwargs) func:表示应用于各分组的函数或方法。 *args和**kwargs :表示传递给func的位置参数或关键字参数。...为了将类别类型的数据转换为数值类型的数据,类别类型的数据在被应用之前需要经过“量化”处理,从而转换为哑变量。
领取专属 10元无门槛券
手把手带您无忧上云