pd.read_html(url) # 解析URL、字符串或者HTML⽂件,抽取其中的tables表格
导出数据
df.to_csv(filename) #导出数据到CSV⽂件
df.to_excel...DataFrame对象中每⼀列的唯⼀值和计数
df.isnull().any() # 查看是否有缺失值
df[df[column_name].duplicated()] # 查看column_name...对象中的⾮空值,并返回⼀个Boolean数组
df.dropna() # 删除所有包含空值的⾏
df.dropna(axis=1) # 删除所有包含空值的列
df.dropna(axis=1,thresh...max,col3:[ma,min]}) # 创建⼀个按列col1进⾏分组,计算col2的最⼤值和col3的最⼤值、最⼩值的数据透视表
df.groupby(col1).agg(np.mean) # 返回按列...= y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]
列表推导式可以包含复杂表达式和嵌套函数
from math import pi