首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

将函数应用于数据帧中列标题包含特定字符串的列

,可以通过使用 pandas 库的 filter() 方法来实现。该方法允许筛选出列标题中包含特定字符串的列,并对这些列应用指定的函数。

具体步骤如下:

  1. 导入 pandas 库:
代码语言:txt
复制
import pandas as pd
  1. 创建数据帧(DataFrame)对象:
代码语言:txt
复制
df = pd.DataFrame({'col1': [1, 2, 3], 'col2_str': ['abc', 'def', 'ghi'], 'col3_num': [4.5, 6.7, 8.9]})
  1. 使用 filter() 方法选择包含特定字符串的列:
代码语言:txt
复制
filtered_columns = df.filter(like='str', axis=1)  # 选择列标题包含 'str' 的列
  1. 应用指定的函数:
代码语言:txt
复制
result = filtered_columns.apply(lambda x: x.str.upper())  # 将所选列中的字符串转为大写

在以上示例中,filtered_columns 是一个新的数据帧对象,其中只包含列标题中包含 'str' 的列。apply() 方法可用于对这些列应用函数,这里使用了一个 lambda 函数将字符串转为大写。最终的结果存储在 result 中。

关于 pandas 库的更多详细信息和示例,可以参考腾讯云文档中的 pandas 文档

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python 数据处理 合并二维数组和 DataFrame 特定

pandas.core.frame.DataFrame; 生成一个随机数数组; 这个随机数数组与 DataFrame 数据合并成一个新 NumPy 数组。...numpy 是 Python 中用于科学计算基础库,提供了大量数学函数工具,特别是对于数组操作。pandas 是基于 numpy 构建一个提供高性能、易用数据结构和数据分析工具库。...然后使用 pd.DataFrame (data) 这个字典转换成了 DataFrame df。在这个 DataFrame ,“label” 作为列名,列表元素作为数据填充到这一。...arr = np.concatenate((random_array, values_array), axis=1) 最后一行代码使用 numpy 库 concatenate () 函数前面得到两个数组沿着第二轴...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 特定值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本数据处理和数组操作。

13600
  • 如何在 Pandas 创建一个空数据并向其附加行和

    Pandas是一个用于数据操作和分析Python库。它建立在 numpy 库之上,提供数据有效实现。数据是一种二维数据结构。在数据数据以表格形式在行和对齐。...在本教程,我们学习如何创建一个空数据,以及如何在 Pandas 向其追加行和。...然后,通过列名 ['Name', 'Age'] 传递给 DataFrame 构造函数 columns 参数,我们在数据创建 2 。...ignore_index参数设置为 True 以在追加行后重置数据索引。 然后,我们 2 [“薪水”、“城市”] 附加到数据。“薪水”值作为系列传递。序列索引设置为数据索引。...然后,通过列名称 ['Batsman', 'Runs', 'Balls', '5s', '4s'] 传递给 DataFrame 构造函数 columns 参数,我们在数据创建了 6

    27130

    C语言经典100例002-M行N二维数组字符数据,按顺序依次放到一个字符串

    系列文章《C语言经典100例》持续创作,欢迎大家关注和支持。...喜欢同学记得点赞、转发、收藏哦~ 后续C语言经典100例将会以pdf和代码形式发放到公众号 欢迎关注:计算广告生态 即时查收 1 题目 编写函数fun() 函数功能:M行N二维数组字符数据...,按顺序依次放到一个字符串 例如: 二维数组数据为: W W W W S S S S H H H H 则字符串内容是:WSHWSHWSH [image.png] 2 思路 第一层循环按照数进行...M 3 #define N 4 /** 编写函数fun() 函数功能:M行N二维数组字符数据,按顺序依次放到一个字符串 例如: 二维数组数据为: W W W W S S S...S H H H H 则字符串内容是:WSHWSHWSH **/ // 0 1 2 3 // 0 W W W W // 1 S S S S // 2 H H H H char *fun(char

    6.1K30

    如何在 Python 绘图图形上手动添加图例颜色和图例字体大小?

    但是,并非所有情况都可以通过 Plotly 默认图例设置来适应。本文讨论如何在 Python 手动图例颜色和字体大小应用于 Plotly 图形。...Plotly Express 库创建散点图,其中包含来自熊猫数据 'df' x 和 y 数据。...例 在此示例,我们通过定义包含三个键数据字典来创建自己数据:“考试 1 分数”、“考试 2 分数”和“性别”。随机整数和字符串值使用 NumPy 分配给这些键。然后我们使用了 pd。...DataFrame() 方法,用于从数据字典创建数据。 然后使用 px.scatter() 方法创建散点图。数据“考试 1 分数”和“考试 2 分数”分别用作 x 轴和 y 轴。...我们首先使用 px.data.tips() 函数首先将提示数据集加载到 Pandas 数据

    77730

    嘀~正则表达式快速上手指南(下篇)

    转换完字符串添加到 emails_dict 字典,以便后续能极其方便地转换为pandas数据结构。 在步骤3B,我们对 s_name 进行几乎一致操作. ?...就像之前做一样,我们在步骤3B首先检查s_name 值是否为None 。 然后,在字符串分配给变量前,我们调用两次了 re 模块re.sub() 函数。...标题从邮件内容中分离出来是非常复杂任务,尤其当文中有很多不同形式标题。...我们需要做就是使用如下代码: ? 通过上面这行代码,使用pandasDataFrame() 函数,我们字典组成 emails 转换成数据,并赋给变量emails_df. 就这么简单。...我们已经拥有了一个精致Pandas数据,实际上它是一个简洁表格,包含了从email中提取所有信息。 请看下数据前几行: ?

    4K10

    精通 Pandas 探索性分析:1~4 全

    重命名和删除 Pandas 数据 处理和转换日期和时间数据 处理SettingWithCopyWarning 函数应用于 Pandas 序列或数据 多个数据合并并连接成一个 使用 inplace...重命名 Pandas 数据 在本节,我们学习在 Pandas 重命名列标签各种方法。 我们学习如何在读取数据后和读取数据时重命名列,并且还将看到如何重命名所有特定。...函数应用于 Pandas 序列或数据 在本节,我们学习如何 Python 预构建函数和自构建函数应用于 pandas 数据对象。...我们还将学习有关函数应用于 Pandas 序列和 Pandas 数据知识。...接下来,我们了解如何函数应用于多个或整个数据值。 我们可以使用applymap()方法。 它以类似于apply()方法方式工作,但是在多或整个数据上。

    28.2K10

    Pandas 秘籍:1~5

    另见 Pandas read_csv函数官方文档 访问主要数据组件 可以直接从数据访问三个数据组件(索引,数据每一个。...不一定是这种情况,因为这些可能包含整数,布尔值,字符串或其他甚至更复杂 Python 对象(例如列表或字典)混合物。 对象数据类型是 Pandas 无法识别为其他任何特定类型全部内容。...更多 除了insert方法末尾,还可以插入数据特定位置。insert方法整数位置作为第一个参数,名称作为第二个参数,并将值作为第三个参数。...许多秘籍将与第 1 章,“Pandas 基础”内容类似,这些内容主要涵盖序列操作。 选择数据多个 选择单个是通过所需列名作为字符串传递给数据索引运算符来完成。...这些布尔值通常存储在序列或 NumPy ndarray,通常是通过布尔条件应用于数据一个或多个来创建

    37.5K10

    涨姿势!看骨灰级程序员如何玩转Python

    此参数还有另一个优点,如果你有一个同时包含字符串和数字,那么将其类型声明为字符串是一个好选择,这样就可以在尝试使用此列作为键去合并表时不会出错。...df.head() 在上面的代码,我们定义了一个带有两个输入变量函数,并使用apply函数将其应用于'c1'和'c2'。 但“apply函数问题是它有时太慢了。...B. dropna = False:如果你要统计数据包含缺失值。 3....Percentile groups 你有一个数字,并希望将该值分类为组,例如前5%,分为组1,前5-20%分为组2,前20%-50%分为组3,最后50%分为组4。...如果同时包含缺失值和整数,则数据类型仍将是float而不是int。导出表时,可以添加float_format ='%。0f'所有浮点数舍入为整数。

    2.3K20

    10招!看骨灰级Pythoner如何玩转Python

    此参数还有另一个优点,如果你有一个同时包含字符串和数字,那么将其类型声明为字符串是一个好选择,这样就可以在尝试使用此列作为键去合并表时不会出错。...我们定义了一个带有两个输入变量函数,并使用apply函数将其应用于 c1 和 c2 。...dropna = False #如果你要统计数据包含缺失值。...Percentile groups 你有一个数字,并希望将该值分类为组,例如前5%,分为组1,前5-20%分为组2,前20%-50%分为组3,最后50%分为组4。...另一个技巧是处理混合在一起整数和缺失值。如果同时包含缺失值和整数,则数据类型仍将是float而不是int。导出表时,可以添加float_format = %。0f 所有浮点数舍入为整数。

    2.4K30

    Pandas 秘籍:6~11

    它将两个聚合函数sum和mean每一个应用于每个,从而每组返回四个。 步骤 3 进一步进行,并使用字典特定聚合映射到不同聚合函数。 请注意,size聚合函数返回每个组总行数。...最终结果是一个数据,其与原始相同,但过滤掉了不符合阈值状态行。 由于过滤后数据标题可能与原始标题相同,因此您需要进行一些检查以确保操作成功完成。...准备 在本秘籍,我们检查一个数据集,该数据每个中都有一个包含多个不同变量。 我们使用str访问器这些字符串解析为单独以整理数据。...并非将ffill方法应用于整个数据,我们仅将其应用于President。 在 Trump 数据,其他没有丢失数据,但这不能保证所有抓取表在其他中都不会丢失数据。...例如,如果您有一个数据架,其中标题栏正好为三year,month,和day,,则将该数据传递给to_datetime函数返回时间戳序列。

    34K10

    R语言使用特征工程泰坦尼克号数据分析应用案例

    在R我们可以使用rbind,它代表行绑定,只要两个数据具有彼此相同。...所有这些字符串拆分结果都被组合成一个向量作为sapply函数输出,然后我们将其存储到原始数据一个新,称为Title。 最后,我们可能希望从标题开头剥离这些空格。...所以在这里我们两个标题“Mme”和“Mlle”组合成一个新临时向量,使用c()运算符并查看整个Title任何现有标题是否与它们任何一个匹配。然后我们用“Mlle”替换任何一场比赛。...因为我们在单个数据上构建了因子,然后在构建它们之后将它们拆分,R将为所有新数据提供所有因子级别,即使该因子不存在于一个数据也是如此。它仍然具有因子水平,但在集合没有实际观察。整洁把戏对吗?...我们已根据原始列车和测试集大小隔离了组合数据某些行范围。之后逗号后面没有数字表示我们想要使用此子集获取所有并将其存储到指定数据

    6.6K30

    盘一盘 Python 系列 - Cufflinks (下)

    布尔:True 对所有数据都做拟合 列表:[columns] 对列表包含数据做拟合 ---- bestfit_colors:字典或列表格式,用于设定数据拟合线颜色。...字典:{column:color} 按数据标签设置颜色 列表:[color] 对每条轨迹按顺序设置颜色 ---- categories:字符串格式,数据中用于区分类别的标签 x:字符串格式...,数据中用于 x 轴变量标签 y:字符串格式,数据中用于 y 轴变量标签 z:字符串格式,数据中用于 z 轴变量标签 (只适用 3D 图) text:字符串格式,数据用于显示文字标签...gridcolor:字符串格式,用于设定网格颜色 zerolinecolor:字符串格式,用于设定零线颜色 labels:字符串格式,数据标签设为饼状图每块标签,仅当 kind = pie...values:字符串格式,数据数据值设为饼状图每块面积,仅当 kind = pie 才适用。

    4.6K10

    R语言函数含义与用法,实现过程解读

    如果参数包含数字的话,数字将被强制转化为字符串。在默认情况下,参数字符串是被一个空格分隔,不过通过参数sep=string 用户可以把它更改为其他字符串,包括空字符串。...数据使用惯例 1 每个独立,适当定义问题所包含所有变量收入同一个数据,并赋予合适、易理解、易辨识名称; 2 处理问题时,当相应数据挂接于位置2,同时在第1层工作目录下存放操作数值和临时变量...这样我们可以很简单在同一个目录下处理多个问题,而且对每个问题都可以使用x,y,z这样变量名。 七  从文件读取数据 7.1 函数read.table() 该函数可以直接文件完整数据读入。...此时文件要符合特定格式: 1 第一行应当提供数据每个变量名称; 2 每一行(除变量名称行)应包含一个行标号和各变量值。...2 显示多元数据 如果X是一个数值矩阵或数据,下面的命令 > pairs(X) 生成一个配对散点图矩阵,矩阵由X变量对其他各变量散点图组成,得到矩阵每个散点图行、长度都是固定

    4.7K120

    R语言函数含义与用法,实现过程解读

    如果参数包含数字的话,数字将被强制转化为字符串。在默认情况下,参数字符串是被一个空格分隔,不过通过参数sep=string 用户可以把它更改为其他字符串,包括空字符串。...数据使用惯例 1 每个独立,适当定义问题所包含所有变量收入同一个数据,并赋予合适、易理解、易辨识名称; 2 处理问题时,当相应数据挂接于位置2,同时在第1层工作目录下存放操作数值和临时变量...这样我们可以很简单在同一个目录下处理多个问题,而且对每个问题都可以使用x,y,z这样变量名。 七  从文件读取数据 7.1 函数read.table() 该函数可以直接文件完整数据读入。...此时文件要符合特定格式: 1 第一行应当提供数据每个变量名称; 2 每一行(除变量名称行)应包含一个行标号和各变量值。...2 显示多元数据 如果X是一个数值矩阵或数据,下面的命令 > pairs(X) 生成一个配对散点图矩阵,矩阵由X变量对其他各变量散点图组成,得到矩阵每个散点图行、长度都是固定

    5.7K30

    分析你个人Netflix数据

    当它是,行动迅速,因为再过几个星期,下载“过期”, 下载数据将以.zip文件形式到达,该文件包含大约十几个文件夹,其中大部分包含.csv格式表。 第2步:熟悉数据 这是数据分析过程关键步骤。...字符串转换为PandasDatetime和Timedelta 我们两个时间相关数据看起来确实正确,但是这些数据实际存储格式是什么?...我们可以用df.dtypes快速获取数据数据类型列表,执行: df.dtypes ? 正如我们在这里看到,这三都存储为object,这意味着它们是字符串。...但我们还有一个数据准备任务要处理:过滤标题 我们有很多方法可以进行过滤,但是出于我们目的,我们创建一个名为friends数据框,并仅用标题包含“friends”行填充它。...我们使用str.contains(),给出两个参数: “Friends”,这是我们用来挑选Friends片段字符串。 regex=False,它告诉函数前一个参数是字符串而不是正则表达式。

    1.7K50

    Pandas 学习手册中文第二版:1~5

    这些数据包含新Series对象,具有从原始Series对象复制值。 可以使用带有列名或列名列表数组索引器[]访问DataFrame对象。...以下显示Missoula中大于82度值: 然后可以表达式结果应用于数据(和序列)[]运算符,这仅导致返回求值为True表达式行: 该技术在 pandas 术语称为布尔选择,它将构成基于特定值选择行基础...创建数据期间行对齐 选择数据特定和行 切片应用于数据 通过位置和标签选择数据行和 标量值查找 应用于数据布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章示例...选择数据 使用[]运算符选择DataFrame特定数据。 这与Series不同,在Series,[]指定了行。 可以[]操作符传递给单个对象或代表要检索对象列表。...当应用于数据时,布尔选择可以利用多数据

    8.3K10

    《Python for Excel》读书笔记连载12:使用pandas进行数据分析之理解数据

    处理空单元格方式一致,因此在包含空单元格区域内使用ExcelAVERAGE公式获得与应用于具有相同数字和NaN值(而不是空单元格)系列mean方法相同结果。...为此,首先按洲对行进行分组,然后应用mean方法,该方法将计算每组均值,自动排除所有非数字: 如果包含多个,则生成数据框架具有层次索引,即我们前面遇到多重索引: 可以使用pandas提供大多数描述性统计信息...下面的数据框架数据组织方式与数据记录典型存储方式类似,每行显示特定地区指定水果销售交易: 要创建数据透视表,数据框架作为第一个参数提供给pivot_table函数。...values通过使用aggfunc聚合到结果数据框架数据部分,aggfunc是一个可以作为字符串或NumPyufunc提供函数。...这使得跨感兴趣维度读取摘要信息变得容易。在我们数据透视表,会立即看到,在北部地区没有苹果销售,而在南部地区,大部分收入来自橙子。如果要反过来标题转换为单个值,使用melt。

    4.2K30

    R数据科学|第八章内容介绍

    使用readr进行数据导入 本文介绍如何使用readr包平面文件加载到 R ,readr 也是 tidyverse 核心 R包之一。...我们重点介绍read_csv() 函数,不仅因为 CSV 文件是数据存储最常用形式之一,还因为一旦掌握 read_csv() 函数,你就可以将从中学到知识非常轻松地应用于 readr 其他函数。...: 参数 作用 file 读取文件路径,路径名需要用反斜杠表示 col_names 如果为TRUE,输入第一行将被用作列名,并且不会包含数据。...如果col_names是一个字符向量,这些值将被用作名称,并且输入第一行将被读入输出数据第一行。缺少(NA)列名将产生一个警告,并被填充为哑名X1, X2等。...guess_max 用于猜测类型最大记录数 progress 显示进度条 skip_empty_rows 是否忽略空白行 如果能够熟练使用read_csv()函数,就能同样使用readr包其他函数来读取文件了

    2.2K40
    领券