这个简单的更改显示了我们可以从PyTorch的Dataset类获得的各种好处。例如,我们可以生成多个不同的数据集并使用这些值,而不必像在NumPy中那样,考虑编写新的类或创建许多难以理解的矩阵。...用DataLoader加载数据 尽管Dataset类是创建数据集的一种不错的方法,但似乎在训练时,我们将需要对数据集的samples列表进行索引或切片。...完成TES数据集的代码 让我们回到TES数据集。似乎初始化函数的代码有点不优雅(至少对于我而言,确实应该有一种使代码看起来更好的方法。...堆叠种族张量,独热编码形式表示该张量是十个种族中的某一个种族 堆叠性别张量,独热编码形式表示数据集中存在两种性别中的某一种性别 堆叠名称张量,最后一个维度应该是charset的长度,第二个维度是名称长度...测试集的一种方法是为训练数据和测试数据提供不同的data_root,并在运行时保留两个数据集变量(另外还有两个数据加载器),尤其是在训练后立即进行测试的情况下。
△在末尾添加元素时,Python列表复杂度为O(1),NumPy复杂度为O(N) 向量运算 向量初始化 创建NumPy数组的一种方法是从Python列表直接转换,数组元素的类型与列表元素类型相同。...但是有更好的方法:arange函数对数据类型敏感,如果将整数作为参数,生成整数数组;如果输入浮点数(例如arange(3.)),则生成浮点数组。 但是arange在处理浮点数方面并不是特别擅长: ?...这些索引方法允许分配修改原始数组的内容,因此需要特别注意:只有下面最后一种方法才是复制数组,如果用其他方法都可能破坏原始数据: ?...从NumPy数组中获取数据的另一种超级有用的方法是布尔索引,它允许使用各种逻辑运算符,来检索符合条件的元素: ? 注意:Python中的三元比较3在NumPy数组中不起作用。...△RGB图像数组(为简便起见,上图仅2种颜色) 如果数据的布局不同,则使用concatenate命令堆叠图像,并在axis参数中提供显式索引数会更方便: ?
arange 函数对类型很敏感:如果你以整型数作为参数输入,它会生成整型数;如果你输入浮点数(比如 arange(3.)),它会生成浮点数。...在进行测试时,我们通常需要生成随机数组: 向量索引 一旦你的数组中有了数据,NumPy 就能以非常巧妙的方式轻松地提供它们: 除了「花式索引(fancy indexing)」外,上面给出的所有索引方法都被称为...Python 列表与 NumPy 数组的对比 为了获取 NumPy 数组中的数据,另一种超级有用的方法是布尔索引(boolean indexing),它支持使用各类逻辑运算符: any 和 all 的作用与在...但实际上,NumPy 中还有一种更好的方法。我们没必要将内存耗在整个 I 和 J 矩阵上。存储形状合适的向量就足够了,广播规则可以完成其余工作。...它们硬编码了 (y,x,z) 的索引顺序,即 RGB 图像的顺序: NumPy 使用 (y,x,z) 顺序的示意图,堆叠 RGB 图像(这里仅有两种颜色) 如果你的数据布局不同,使用 concatenate
在进行任何操作之前,最好先设置随机数种子,以确保我们的结果可重复。# 随机种子以提高可重复性numpy.random.seed(7)我们还可以使用上一部分中的代码将数据集作为Pandas数据框加载。...对于正常的分类或回归问题,我们将使用交叉验证来完成。对于时间序列数据,值的顺序很重要。我们可以使用的一种简单方法是将有序数据集拆分为训练数据集和测试数据集。...由于数据集的准备方式,我们必须移动预测,以使它们在x轴上与原始数据集对齐。准备好之后,将数据绘制成图表,以蓝色显示原始数据集,以绿色显示训练数据集的预测,以红色显示看不见的测试数据集的预测。...乘客(以千计),在测试数据集上的平均误差为52乘客(以千计)。...批次之间具有内存的堆叠式LSTM最后,我们将看看LSTM的一大优势:事实上,将LSTM堆叠到深度网络体系结构中就可以对其进行成功的训练。LSTM网络可以以与其他层类型堆叠相同的方式堆叠在Keras中。
在本教程中,将执行以下步骤: 使用Keras在TensorFlow中构建完全卷积网络(FCN) 下载并拆分样本数据集 在Keras中创建生成器以加载和处理内存中的一批数据 训练具有可变批次尺寸的网络 使用...确定最小输入尺寸的尝试和错误方法如下: 确定要堆叠的卷积块数 选择任何输入形状以说出(32, 32, 3)并堆叠数量越来越多的通道的卷积块 尝试构建模型并打印model.summary()以查看每个图层的输出形状...在传统的图像分类器中,将图像调整为给定尺寸,通过转换为numpy数组或张量将其打包成批,然后将这批数据通过模型进行正向传播。在整个批次中评估指标(损失,准确性等)。根据这些指标计算要反向传播的梯度。...一种解决方法是编写一个自定义训练循环,该循环执行以下操作: 通过将通过每个图像,在列表中(分批),通过模型(height, width, 3)来(1, height, width, 3)使用np.expand_dims...GitHub存储库包含一个Colab笔记本,该笔记本将训练所需的所有内容组合在一起。可以在Colab本身中修改python脚本,并在选择的数据集上训练不同的模型配置。
“他山之石,可以攻玉”,站在巨人的肩膀才能看得更高,走得更远。在科研的道路上,更需借助东风才能更快前行。...来源:知乎—勃疯疯 地址:https://zhuanlan.zhihu.com/p/419195914 01 第一章 NumPy基础 1.1 生成NumPy数组 1.1.1 从已有数据中创建数组...numpy数组创建函数 生成3*3零矩阵;3*3全是1的矩阵;3阶单位矩阵;3阶对角矩阵 暂时保存生成数据 1.1.4 利用arange、linspace生成数组 arange(start,stop...1的维度 transpose 改变矩阵维度的顺序 1.4.2 合并数组 NumPy数组合并方法 append 合并一维数组 append( axis=0 )按行合并;append( axis...224*224;RandomHorizontalFlip( ) 将图像以默认概率0.5随机水平旋转;ToTensor( ) 将给定图像转换为Tensor datasets.ImageFolder 读取不同目录下图片数据
数据可视化图表为更好地探索、分析数据提供了一种直观的方法,它对最终分析结果的展示具有重要的作用。...当您对一个数据集进行分析时,如果使用数据可视化的方式,那么您会很容易地确定数据集的分类模式、缺失数据、离群值等等。...下图展示了五个常用的数据可视化图表:图片对于组织决策者而言,数据可视化也只是一种辅助工具,从寻找数据间关联到最终做出决定,大致分为以下四步。...NumPy 是 Python 科学计算的软件包,ndarray 则是 NumPy 提供的一种数组结构。Matplotlib 由 John D....图2:matplotlib绘图#### 堆叠柱状图柱状图除了上述使用方法外,还有另外一种堆叠柱状图。所谓堆叠柱状图就是将不同数组别的柱状图堆叠在一起,堆叠后的柱状图高度显示了两者相加的结果值。
难度:2 问题:水平堆叠数组a和b。 输入: 输出: 答案: 10.没有硬编码的情况下,在numpy中如何生成自定义序列? 难度:2 问题:创建以下模式而不使用硬编码。...难度:1 问题:打印完整的numpy数组a,且不截断。 输入: 输出: 答案: 25.如何在python numpy中导入含有数字和文本的数据集,并保持的文本完整性?...难度:2 问题:在iris_2d数据集的20个随机位插入np.nan值 答案: 33.如何找到numpy数组中缺失值的位置?...答案: 方法2是首选,因为它创建了一个可用于采样二维表格数据的索引变量。 43.用另一个数组分组时,如何获得数组中第二大的元素值? 难度:2 问题:第二长的物种的最大价值是什么?...输入: 答案: 46.如何找到首次出现的值大于给定值的位置? 难度:2 问题:查找在iris数据集的第4列花瓣宽度中第一次出现值大于1.0的位置。
堆叠多波段影像 一些遥感数据集与每个波段一起存储在单独的文件中。然而 通常,您希望在分析中同时使用所有波段。例如 您需要将所有条带放在同一个文件或“堆栈”中才能绘制颜色 RGB图像。...EarthPy 有一个 ''stack()'' 函数,可让您 获取一组“.tif”文件,这些文件都位于相同的空间范围、CRS 和分辨率中 并将它们一起导出为一个堆叠的“.tif”文件,或者在 Python...在处理之前,先将数据裁剪到研究区域会更有效 它在 Python 中。最快、最有效的选择是裁剪每个文件 单独地将裁剪后的栅格写入新文件,然后堆叠 将新文件放在一起。...要解决此问题,请务必重新投影裁剪图层以匹配 栅格数据的 CRS。 要重投影数据,请先从栅格剖面中获取栅格的 CRS 对象。然后使用它使用 geopandas ''.to_crs'' 方法重新投影。...,最有效的方法是先 裁剪每个图像,然后堆叠它。
Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。...本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组、索引和切片、数组数学、广播...它的高效性和便捷性使得它成为Python数据科学生态系统中不可或缺的组成部分。...它将输入的数组沿着垂直方向堆叠起来,生成一个新的数组。...它将输入的数组沿着水平方向堆叠起来,生成一个新的数组。
我目前正在做图像数据增强的深度和有效性的研究。这项研究的目的是学习怎样增加只有有限或少量数据的数据集大小,增强训练的卷积网络模型的鲁棒性。...好像这个分类模型试图检测鞋子何时在图像中而不是是否在图像中。 平移操作将有助于它看不到整个鞋子的情况下检测出鞋子。...我已经看过很多有趣的关于对抗网络训练的论文,将一些噪声加入到图像中,模型便无法正确分类。我仍然在寻找能产生比下图更好的添加噪声的方法。 添加噪声可能使畸变更明显,并使模型更加稳健。...,下面是我使用MNIST数据集生成的一些图像。...感谢您阅读本文,希望您现在知道如何实现基本的数据扩充以改进您的分类模型!
9.4 NumPy 数组的基础 本节是《Python 数据科学手册》(Python Data Science Handbook)的摘录。...译者:飞龙 协议:CC BY-NC-SA 4.0 Python 中的数据操作几乎与 NumPy 数组操作同义:即使是像 Pandas 这样的新工具也是围绕 NumPy 数组构建的。...''' x3 ndim: 3 x3 shape: (3, 4, 5) x3 size: 60 ''' 另一个有用的属性是dtype,数组的数据类型(我们之前在“了解 Python 中的数据类型”中讨论过...这是 NumPy 数组切片与 Python 列表切片的不同之处:在列表中,切片是副本。...在可能的情况下,reshape方法将使用初始数组的非副本视图,但对于非连续的内存缓冲区,情况并非总是如此。 另一种常见的形状调整是将一维数组转换为二维行或列矩阵。
更多Python学习内容:ipengtao.com 在科学计算和数据处理过程中,数组的组合和堆叠是一个常见的操作。...NumPy 提供了多种方法来处理数组的堆叠和组合,例如水平堆叠、垂直堆叠、深度堆叠以及基于指定轴的拼接。通过这些方法,可以轻松地对数组进行复杂的数据操作,从而满足不同场景的需求。...NumPy 数组堆叠与组合概述 在 NumPy 中,数组堆叠和组合主要包括以下几类操作: 水平堆叠(Horizontal Stacking):沿水平方向将数组进行拼接。...6] [7 8]] 在垂直堆叠中,数组的列数必须一致。...在实际工作中,无论是处理复杂的数据结构还是实现批量处理,这些方法都能显著简化操作流程并提升工作效率。----
Pandas 是基于 NumPy 的一个开源 Python 库,它被广泛用于快速分析数据,以及数据清洗和准备等工作。...如果你还没安装 Anaconda,你也可以用 Python 自带的包管理工具 pip 来安装: ? Pandas 数据结构 Series 是一种一维数组,和 NumPy 里的数组很相似。...同时你可以用 .loc[] 来指定具体的行列范围,并生成一个子数据表,就像在 NumPy里做的一样。比如,提取 'c' 行中 'Name’ 列的内容,可以如下操作: ?...查找空值 假如你有一个很大的数据集,你可以用 Pandas 的 .isnull() 方法,方便快捷地发现表中的空值: ?...数据透视表 在使用 Excel 的时候,你或许已经试过数据透视表的功能了。数据透视表是一种汇总统计表,它展现了原表格中数据的汇总统计结果。
怎么做呢,首先以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着下降方向走一步,然后又继续以当前位置为基准,再找最陡峭的地方,再走直到最后到达最低处;同理上山也是如此,只是这时候就变成梯度上升算法了...梯度是微积分中一个很重要的概念,之前提到过梯度的意义 在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向...此公式中 m是数据集中数据点的个数,也就是样本数 ½是一个常量,这样是为了在求梯度的时候,二次方乘下来的2就和这里的½抵消了,自然就没有多余的常数系数,方便后续的计算,同时对结果不会有影响 y 是数据集中每个点的真实.../usr/bin/env python3 # -*- coding: utf-8 -*- from numpy import * # 数据集大小 即20个数据点 m = 20 # x的坐标以及对应的矩阵.../usr/bin/env python3 # -*- coding: utf-8 -*- from numpy import * # 数据集大小 即20个数据点 m = 20 # x的坐标以及对应的矩阵
在本文中,您将发现如何使用Keras深度学习库在Python中开发LSTM网络,以解决时间序列预测问题。 完成本教程后,您将知道如何针对自己的时间序列预测问题实现和开发LSTM网络。...# 随机种子以提高可重复性 numpy.random.seed(7) 我们还可以使用上一部分中的代码将数据集作为Pandas数据框加载。...对于正常的分类或回归问题,我们将使用交叉验证来完成。 对于时间序列数据,值的顺序很重要。我们可以使用的一种简单方法是将有序数据集拆分为训练数据集和测试数据集。...最后,我们可以使用模型为训练和测试数据集生成预测,以直观地了解模型的技能。 由于数据集的准备方式,我们必须移动预测,以使它们在x轴上与原始数据集对齐。...LSTM网络可以以与其他层类型堆叠相同的方式堆叠在Keras中。所需配置的一个附加函数是,每个后续层之前的LSTM层必须返回序列。
关于数据清理和特征工程,欢迎大家阅读和学习ShowMeAI在机器学习实战:手把手教你玩转机器学习系列中对应的文章: 机器学习实战 | 机器学习特征工程最全解读 图片 在本篇内容中,ShowMeAI对市面上以数据清洗和特征工程为主题的书籍进行梳理比对...这本书介绍了为建模寻找预测变量的最佳表示以及为改进模型性能寻找预测变量的最佳特征子集的技术。书籍的主语言是R,但即使 R 不是您的主要语言,也不影响对里面的核心技术方法的学习和应用。...图片 书籍简介 这本书详细讲解了将特征(原始数据的数字表示)提取和转换为机器学习模型格式的技术。每章都会以实际数据问题为例讲解,例如如何表示文本或图像数据。...书籍的配套代码覆盖包括 NumPy、Pandas、Scikit-learn 和 Matplotlib 在内的 Python 工具包使用。...hash和分箱计数 具有主成分分析的基于模型的特征工程 模型堆叠的概念,使用 k-means 作为特征化技术 使用手动和深度学习技术提取图像特征 书籍目录 第 1 章:机器学习管道 第 2 章:数值处理的花式技巧
转置:在线性代数中,矩阵的转置操作非常常见,转置是一种数据变换方法,对于二维表而言,转置就意味着行变成列,同时列变成行。...垂直叠加:使用垂直叠加方法,先要构建一个元组,然后将元组交给vstack()函数来码放数组。 深度叠加:还有一种深度叠加方法,这要用到dstack()函数和一个元组。...这种方法是沿着第三个坐标轴(纵向)的方法来叠加一摞数组。举例来说:可以在一个图像数据的二维数组上叠加另一幅图像的数据。 列式堆叠:column_stack()函数以列方式对一维数组进行堆叠。...行式堆叠:同时,numpy也有以行方式对数组进行堆叠的函数,这个用于一维数组的函数名为row_stack(),它将数组作为行码放到二维数组中。...中numpy的堆叠数组。
分类器(Classifier) 分类器是数据挖掘中对样本进行分类的方法的统称,包含决策树、逻辑回归、朴素贝叶斯、神经网络等算法。分类是数据挖掘的一种非常重要的方法。...自助聚合(Bagging) 在并行化的方法 中,我们单独拟合不同的学习器,因此可以同时训练它们。最著名的方法是自助聚合(Bagging),它的目标是生成比单个模型更棒的集成模型。...Bagging的方法实现。 自助法:这种统计技术先随机抽取出作为替代的 B 个观测值,然后根据一个规模为 N 的初始数据集生成大小为 B 的样本(称为自助样本)。 ?...然而,与重点在于减小方差的Bagging不同,Boosting着眼于以一种适应性很强的方式顺序拟合多个弱学习器:序列中每个模型在拟合的过程中,会更加重视那些序列中之前的模型处理地很糟糕的观测数据。...另外,我们将弱学习器逐个添加到当前的集成模型中,在每次迭代中寻找可能的最佳组合(系数、弱学习器)。
领取专属 10元无门槛券
手把手带您无忧上云