功能也几乎恰是这样,所以如果具有良好的SQL基本功和熟练的pandas运用技巧,学习PySpark SQL会感到非常熟悉和舒适。...,由下划线连接,例如some_funciton) 02 几个重要的类 为了支撑上述功能需求和定位,PySpark中核心的类主要包括以下几个: SparkSession:从名字可以推断出这应该是为后续spark...最大的不同在于pd.DataFrame行和列对象均为pd.Series对象,而这里的DataFrame每一行为一个Row对象,每一列为一个Column对象 Row:是DataFrame中每一行的数据抽象...,当接收列名时则仅当相应列为空时才删除;当接收阈值参数时,则根据各行空值个数是否达到指定阈值进行删除与否 dropDuplicates/drop_duplicates:删除重复行 二者为同名函数,与pandas...中的drop_duplicates函数功能完全一致 fillna:空值填充 与pandas中fillna功能一致,根据特定规则对空值进行填充,也可接收字典参数对各列指定不同填充 fill:广义填充 drop
functions **另一种方式通过另一个已有变量:** **修改原有df[“xx”]列的所有值:** **修改列的类型(类型投射):** 修改列名 --- 2.3 过滤数据--- 3、-------...— 2.2 新增数据列 withColumn— withColumn是通过添加或替换与现有列有相同的名字的列,返回一个新的DataFrame result3.withColumn('label', 0)...df['age']>21) 多个条件jdbcDF .filter(“id = 1 or c1 = ‘b’” ).show() #####对null或nan数据进行过滤: from pyspark.sql.functions...count() —— 计算每组中一共有多少行,返回DataFrame有2列,一列为分组的组名,另一列为行总数 max(*cols) —— 计算每组中一列或多列的最大值...mean(*cols) —— 计算每组中一列或多列的平均值 min(*cols) —— 计算每组中一列或多列的最小值 sum(*cols) —— 计算每组中一列或多列的总和 —
,不过这个的对应关系是字符串频率越高,对应数字越小,因此出现最多的将被映射为0,对于未见过的字符串标签,如果用户选择保留,那么它们将会被放入数字标签中,如果输入标签是数值型,会被强转为字符串再处理; 假设我们有下面这个包含...,它可以同时自动判断那些特征是类别型,并将其映射到类别索引上,如下: 接收类型为Vector的列,设置参数maxCategories; 基于列的唯一值数量判断哪些列需要进行类别索引化,最多有maxCategories...,输出一个单向量列,该列包含输入列的每个值所有组合的乘积; 例如,如果你有2个向量列,每一个都是3维,那么你将得到一个9维(3*3的排列组合)的向量作为输出列; 假设我们有下列包含vec1和vec2两列的...如果在数据集中遇到NaN,那么会抛出一个错误,但是用户可以选择是保留还是移除NaN值,通过色湖之handleInvalid参数,如果用户选择保留,那么这些NaN值会被放入一个特殊的额外增加的桶中; 算法...近似最近邻搜索使用数据集(特征向量集合)和目标行(一个特征向量),它近似的返回指定数量的与目标行最接近的行; 近似最近邻搜索同样支持转换后和未转换的数据集作为输入,如果输入未转换,那么会自动转换,这种情况下
定义客户流失变量:1—在观察期内取消订阅的用户,0—始终保留服务的用户 由于数据集的大小,该项目是通过利用apache spark分布式集群计算框架,我们使用Spark的Python API,即PySpark...整个数据集由大约2600万行/日志组成,而子集包含286500行。 完整的数据集收集22277个不同用户的日志,而子集仅涵盖225个用户的活动。...数据集中的七列表示静态用户级信息: 「artist:」 用户正在收听的艺术家「userId」: 用户标识符;「sessionId:」 标识用户在一段时间内的唯一ID。...对于少数注册晚的用户,观察开始时间被设置为第一个日志的时间戳,而对于所有其他用户,则使用默认的10月1日。...在这两种情况下,我们决定简单地从所有进一步的分析中删除,只保留测量最重要的交互作用的变量。
、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...= final_data.na.fill({'salary':mean_salary}) # 3.如果一行至少2个缺失值才删除该行 final_data.na.drop(thresh=2).show...() # 4.填充缺失值 # 对所有列用同一个值填充缺失值 df1.na.fill('unknown').show() # 5.不同的列用不同的值填充 df1.na.fill({'LastName'...df1.dropDuplicates().show() # 只要某一列有重复值,则去重 df1.dropDuplicates(subset=['FirstName']).show() # pandas...)] df=spark.createDataFrame(df, schema=["emp_id","salary"]) df.show() # 求行的最大最小值 from pyspark.sql.functions
我使用相同的目录来加载该表。...例如,如果只需要“ tblEmployee”表的“ key”和“ empName”列,则可以在下面创建目录。...如果您用上面的示例替换上面示例中的目录,table.show()将显示仅包含这两列的PySpark Dataframe。...如果您执行读取操作并在不使用View的情况下显示结果,则结果不会自动更新,因此您应该再次load()以获得最新结果。 下面是一个演示此示例。...首先,将2行添加到HBase表中,并将该表加载到PySpark DataFrame中并显示在工作台中。然后,我们再写2行并再次运行查询,工作台将显示所有4行。
以“左侧”的RDD的key为基准,join上“右侧”的RDD的value, 如果在右侧RDD中找不到对应的key, 则返回 none; rdd_leftOuterJoin_test = rdd_1....以“右侧”的RDD的key为基准,join上“左侧”的RDD的value, 如果在左侧RDD中找不到对应的key, 则返回 none; rdd_rightOuterJoin_test = rdd_1...两个RDD中各自包含的key为基准,能找到共同的Key,则返回两个RDD的值,找不到就各自返回各自的值,并以none****填充缺失的值 rdd_fullOuterJoin_test = rdd_1...(即不一定列数要相同),并且union并不会过滤重复的条目。...join操作只是要求 key一样,而intersection 并不要求有key,是要求两边的条目必须是一模一样,即每个字段(列)上的数据都要求能保持一致,即【完全一样】的两行条目,才能返回。
如果最左边的列没有被包含在查询条件中,则MySQL将不会使用该复合索引 例如:有一个复合索引包含3个字段(A、B、C) 如果只包含了A列,则索引可能被使用 如果包含了A、B列,则索引可以较为高效的使用。...如果包含了A、B、C列,则索引可以完全使用。 如果只包含了B、C或A、C列,则不符合最左匹配原则,索引失效。...如果不指定条件,将删除表中的所有行,但表的结构和约束仍然保留。...4、GROUP BY GROUP BY 子句将具有相同值的行分组。这通常与聚合函数(COUNT、SUM、AVG等)一起使用,以对分组数据执行计算。该子句是根据指定的列将数据组织到群组中。...7、DISTINCT DISTINCT 关键字从结果集中删除重复的行。它在子句之后应用,以确保输出仅包含唯一行。 8、ORDER BY ORDER BY 子句根据一个或多个列对结果集进行排序。
在功能方面,现代PySpark在典型的ETL和数据处理方面具有与Pandas相同的功能,例如groupby、聚合等等。...举个例子,假设有一个DataFrame df,它包含10亿行,带有一个布尔值is_sold列,想要过滤带有sold产品的行。...如果只是想将一个scalar映射到一个scalar,或者将一个向量映射到具有相同长度的向量,则可以使用PandasUDFType.SCALAR。...在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...如果的 UDF 删除列或添加具有复杂数据类型的其他列,则必须相应地更改 cols_out。
大卸八块 数据框的应用编程接口(API)支持对数据“大卸八块”的方法,包括通过名字或位置“查询”行、列和单元格,过滤行,等等。统计数据通常都是很凌乱复杂同时又有很多缺失或错误的值和超出常规范围的数据。...这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3. 列名和个数(行和列) 当我们想看一下这个数据框对象的各列名、行数或列数时,我们用以下方法: 4....描述指定列 如果我们要看一下数据框中某指定列的概要信息,我们会用describe方法。这个方法会提供我们指定列的统计概要信息,如果没有指定列名,它会提供这个数据框对象的统计信息。 5....查询多列 如果我们要从数据框中查询多个指定列,我们可以用select方法。 6. 查询不重复的多列组合 7. 过滤数据 为了过滤数据,根据指定的条件,我们使用filter命令。...到这里,我们的PySpark数据框教程就结束了。 我希望在这个PySpark数据框教程中,你们对PySpark数据框是什么已经有了大概的了解,并知道了为什么它会在行业中被使用以及它的特点。
中可以指定要分区的列:df.partitionBy("department","state").write.mode('overwrite').csv(path, sep=';')注意 ②可以通过上面所有代码行中的...PandasPandas可以使用 iloc对行进行筛选:# 头2行df.iloc[:2].head() PySpark在 Spark 中,可以像这样选择前 n 行:df.take(2).head()#...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数...例如,我们对salary字段进行处理,如果工资低于 60000,我们需要增加工资 15%,如果超过 60000,我们需要增加 5%。...另外,大家还是要基于场景进行合适的工具选择:在处理大型数据集时,使用 PySpark 可以为您提供很大的优势,因为它允许并行计算。 如果您正在使用的数据集很小,那么使用Pandas会很快和灵活。
import pandas as pd df = pd.read_excel(‘D:\用户-1.xlsx’) 图2 快速观察上述小表格: 第1行和第5行包含完全相同的信息。...第3行和第4行包含相同的用户名,但国家和城市不同。 删除重复值 根据你试图实现的目标,我们可以使用不同的方法删除重复项。最常见的两种情况是:从整个表中删除重复项或从列中查找唯一值。...此方法包含以下参数: subset:引用列标题,如果只考虑特定列以查找重复值,则使用此方法,默认为所有列。 keep:保留哪些重复值。’...如果我们指定inplace=True,那么原始的df将替换为新的数据框架,并删除重复项。 图5 在列表或数据表列中查找唯一值 有时,我们希望在数据框架列的列表中查找唯一值。...当我们对pandas Series对象调用.unique()时,它将返回该列中唯一元素的列表。
如果你 "即时" 添加流媒体数据,则你最好的选择是使用字典或列表,因为 Python 在列表的末尾透明地预分配了空间,所以追加的速度很快。...为了使其发挥作用,这两个DataFrame需要有(大致)相同的列。这与NumPy中的vstack类似,你如下图所示: 在索引中出现重复的值是不好的,会遇到各种各样的问题。...注意:要小心,如果第二个表有重复的索引值,你会在结果中出现重复的索引值,即使左表的索引是唯一的 有时,连接的DataFrame有相同名称的列。...用drop删除行的速度出奇的慢,如果原始标签不是唯一的,就会导致错综复杂的bug。...默认情况下,Pandas会对任何可远程求和的东西进行求和,所以必须缩小你的选择范围,如下图: 注意,当对单列求和时,会得到一个Series而不是一个DataFrame。
检测各行是否重复,返回一个行索引的bool结果,可通过keep参数设置保留第一行/最后一行/无保留,例如keep=first意味着在存在重复的多行时,首行被认为是合法的而可以保留 删除重复值,drop_duplicates...(通过axis参数设置对行还是对列,默认是行),仅接收函数作为参数 ?...,要求每个df内部列名是唯一的,但两个df间可以重复,毕竟有相同列才有拼接的实际意义) merge,完全类似于SQL中的join语法,仅支持横向拼接,通过设置连接字段,实现对同一记录的不同列信息连接,支持...sort_index、sort_values,既适用于series也适用于dataframe,sort_index是对标签列执行排序,如果是dataframe可通过axis参数设置是对行标签还是列标签执行排序...;sort_values是按值排序,如果是dataframe对象,也可通过axis参数设置排序方向是行还是列,同时根据by参数传入指定的行或者列,可传入多行或多列并分别设置升序降序参数,非常灵活。
= 'ODD HOURS', 1).otherwise(0)).show(10) 展示特定条件下的10行数据 在第二个例子中,应用“isin”操作而不是“when”,它也可用于定义一些针对行的条件。...如果我们寻求的这个条件是精确匹配的,则不应使用%算符。...行数据进行startsWith操作和endsWith操作的结果。...10、缺失和替换值 对每个数据集,经常需要在数据预处理阶段将已存在的值替换,丢弃不必要的列,并填充缺失值。pyspark.sql.DataFrameNaFunction库帮助我们在这一方面处理数据。...使用repartition(self,numPartitions)可以实现分区增加,这使得新的RDD获得相同/更高的分区数。
,每个文件里包含了很多数据,每行数据由4个字段的值构成,不同字段之间用逗号隔开,4个字段分别为orderid,userid,payment和productid,要求求出Top N个payment值。...result2=result1.map(lambda x:x.split(",")[2]) # 将第三列数据转换成键值对(key为数字,value为空串) result3=result2.map(lambda...案例二:文件排序 任务描述:有多个输入文件,每个文件中的每一行内容均为一个整数。...,如果第1列数据相等,则根据第2列数据降序排序。....map(lambda x: (SecondarySortKey(x[0]),x[1])) # 对数据进行按键排序 rdd5=rdd4.sortByKey(False) # 只保留值
为了使数据简洁一点,只保留数据中的部分列和前100行,并设置“日期”为索引。 ? 读取的原始数据如上图,本文使用这些数据来介绍统计运算函数。 二、最大值和最小值 ? max(): 返回数据的最大值。...在Pandas中,数据的获取逻辑是“先列后行”,所以max()默认返回每一列的最大值,axis参数默认为0,如果将axis参数设置为1,则返回的结果是每一行的最大值,后面介绍的其他统计运算函数同理。...根据DataFrame的数据特点,每一列的数据属性相同,进行统计运算是有意义的,而每一行数据的数据属性不一定相同,进行统计计算一般没有实际意义,极少使用,所以本文也不进行举例。...累计求和是指,对当前数据及其前面的所有数据求和。如索引1的累计求和结果为索引0、索引1的数值之和,索引2的累计求和结果为索引0、索引1、索引2的数值之和,以此类推。 ?...cummax(): 对数据累计求最大值。 cummin(): 对数据累计求最小值。 这两个函数的累计原理都与cumsum()相同,此外还有累计求积函数cumprod()等,分别有不同的应用场景。
3.JOIN 添加外部行 如果指定了OUTER JOIN保留表中未找到匹配的行将作为外部行添加到虚拟表 VT2,生成虚拟表 VT3。...如果FROM子句包含两个以上的表,则对上一个联接生成的结果表和下一个表重复执行步骤1~3,直到处理完所有的表为止。 4.WHERE 应用WEHRE过滤器 对虚拟表 VT3应用WHERE筛选器。...5.GROUP BY 分组 按GROUP BY子句中的列/列表将虚拟表 VT4中的行唯一的值组合成为一组,生成虚拟表VT5。...如果应用了GROUP BY,那么后面的所有步骤都只能得到的虚拟表VT5的列或者是聚合函数(count、sum、avg等)。原因在于最终的结果集中只为每个组包含一行。...10.DISTINCT 行去重 将重复的行从虚拟表 VT8中移除,产生虚拟表 VT9。DISTINCT用来删除重复行,只保留唯一的。
01 nunique number of unique,用于统计各列数据的唯一值个数,相当于SQL语句中的count(distinct **)用法。...正因为各列的返回值是一个ndarray,而对于一个dataframe对象各列的唯一值ndarray长度可能不一致,此时无法重组成一个二维ndarray,从这个角度可以理解unique不适用于dataframe...03 value_counts 如果说unique可以返回唯一值结果的话,那么value_counts则在其基础上进一步统计各唯一值出现的个数;类似的,unique返回一个无标签的一维ndarray作为结果...普通聚合函数mean和agg的用法区别是,前者适用于单一的聚合需求,例如对所有列求均值或对所有列求和等;而后者适用于差异化需求,例如A列求和、B列求最值、C列求均值等等。...数据透视表本质上仍然数据分组聚合的一种,只不过是以其中一列的唯一值结果作为行、另一列的唯一值结果作为列,然后对其中任意(行,列)取值坐标下的所有数值进行聚合统计,就好似完成了数据透视一般。
在 PySpark 中,链式调用非常常见,通常用于对 RDD 进行一系列变换或操作。...三、reduceByKey算子定义:reduceByKey算子用于将具有相同键的值进行合并,并通过指定的聚合函数生成一个新的键值对 RDD。...语法:new_rdd = rdd.reduceByKey(func) 参数func是一个用于合并两个相同键的值的函数,其接收两个相同类型的参数并返回一个相同类型的值,其函数表示法为f:(V,V)→>V...f: 函数的名称或标识符(V, V):表示函数接收两个相同类型的参数→ V:表示函数的返回值类型from pyspark import SparkConf, SparkContextimport osos.environ...如果返回 True,则该元素会被保留在新 RDD 中如果返回 False,则该元素会被过滤掉from pyspark import SparkConf, SparkContextimport osos.environ
领取专属 10元无门槛券
手把手带您无忧上云