首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Pytorch 】笔记二:动态图、自动求导及逻辑回归

    疫情在家的这段时间,想系统的学习一遍 Pytorch 基础知识,因为我发现虽然直接 Pytorch 实战上手比较快,但是关于一些内部的原理知识其实并不是太懂,这样学习起来感觉很不踏实, 对 Pytorch 的使用依然是模模糊糊, 跟着人家的代码用 Pytorch 玩神经网络还行,也能读懂,但自己亲手做的时候,直接无从下手,啥也想不起来, 我觉得我这种情况就不是对于某个程序练得不熟了,而是对 Pytorch 本身在自己的脑海根本没有形成一个概念框架,不知道它内部运行原理和逻辑,所以自己写的时候没法形成一个代码逻辑,就无从下手。这种情况即使背过人家这个程序,那也只是某个程序而已,不能说会 Pytorch, 并且这种背程序的思想本身就很可怕, 所以我还是习惯学习知识先有框架(至少先知道有啥东西)然后再通过实战(各个东西具体咋用)来填充这个框架。而「这个系列的目的就是在脑海中先建一个 Pytorch 的基本框架出来, 学习知识,知其然,知其所以然才更有意思 :)」。

    05
    领券