数据被称为21世纪的石油,其中客户数据又是数据中最为重要的。大数据中与客户数据有关的,包括社交媒体数据、电子邮件、调查、客户服务数据等,很 多组织都拥有很多数据。但是,很多数据还处在原油阶段,没能得到处理、提取、和加工,客户数据还不能产生业务价值。只有组织采取行动,深挖数据,客户数据 才能有所贡献,而不止是一堆0、1和文本。
现在数据分析能力在职场中越来越重要,尤其对运营人来说,数据分析就是运营人职场能力的分水岭,不管是做内容运营、产品运营还是活动、直播运营,数据分析基本上已经成了大厂招聘运营的标配:
因为我实习的工作是游戏后端开发,所以难免会遇到游戏领域的一些专业知识,就比如游戏数据分析。因为之前从未接触过游戏这一块,所以很多东西得去学,在之前老大给我一个任务:统计一下XX款游戏近三个月的留存情况、Guide分布、付费情况,当时接到任务脑袋里是蒙的,留存??Guide分布??付费的指标有哪些??这些我都不知道,这些都属于游戏数据分析的内容,本文就记录一下我近期学习的游戏数据分析吧。
Online-to-Offline( 简称 O2O) 电子商务模式,是一个连接线上用户和线下商家的多边平台商业模式。 O2O 商业模式将实体经济与线上资源融合在一起,使网络成为实体经济延伸到虚拟世界的渠道; 线下商业可以到线上挖掘和吸引客源,而消费者可以在线上筛选商品和服务并完成支付,再到实体店完成余下消费。 它最先由 TrialPay 创始人 AlexRampell提出,在 2006 年沃尔玛公司的 B2C 战略中予以应用,随后以网络团购形式为大家所熟知。 目前 O2O电子商务与社交网络和移动终端紧密结合
Online-to-Offline( 简称 O2O)电子商务模式,是一个连接线上用户和线下商家的多边平台商业模式。O2O商业模式将实体经济与线上资源融合在一起,使网络成为实体经济延伸到虚拟世界的渠道; 线下商业可以到线上挖掘和吸引客源,而消费者可以在线上筛选商品和服务并完成支付,再到实体店完成余下消费。它最先由TrialPay创始人AlexRampell提出,在2006年沃尔玛公司的B2C战略中予以应用,随后以网络团购形式为大家所熟知。目前O2O电子商务与社交网络和移动终端紧密结合,除网络团
你是否和我有同样的感觉,不知道从什么时候开始我们的隐私已经彻彻底底地暴露,在互联网场景下我们就是在裸奔。列举几个情景,你应该也会感同身受。
我特别不喜欢装逼的产品经理,看文章也一样不喜欢华而不实的。所以督促自己写文章时,把懂的、经历过的能细就写的尽量详细;不懂的就去学,然后把整理的笔记分享出来,数据分析方面我涉入不多,内容由于缺少实战经验,会比较基础和理论,希望同样对你有帮助。
营销,曾一度被认为是神秘莫测的魔法,现在已经成为一种可量化、以数据为基础的功能。但在企业中,如何利用数据分析推动营销决策呢? 名字总被赋予阴郁的含义,如今,数字化市场营销宣布将客户数据作为他们新的主宰者。不经过对数据分析的切实考量,就不能下营销决策。营销魔法已经开始量化,但数据导向的市场营销究竟意味着什么呢? “可以说,在市场营销历史上最重要的演变是能够了解你所拥有的数据的含义,什么数据是可以拿到的,如何组织并最终激活这些数据,”一家利用客户数据创建并交付一对一营销视频的技术供应商, SundaySky的
在解决某个数学问题时,我们可以套入对应的公式进行解决; 那在数据分析里,也可以使用对应的公式来分析问题,并且对未来构建数据分析模型也有帮助; 给大家分享一下五种常见的数据方法,我们一起来看一下。
导读:说到数据分析,大家可能就会想到回归,聚类什么的,不过对于电商的小伙伴来说,这些都太复杂了。而实际分析的时候,其实并不需要这么复杂的算法,大家需要的只是: 对比 细分 转化 分类 只要掌握了这四种思想,基本上已经可以应付日常的分析工作了。 对比思想 数据对比主要是横向和纵向两个角度,指标间的横向对比帮助我们认识预期值的合理性,而指标自身在时间维度上的对比,即我们通常说的趋势分析。 以店铺的成交额分析为例: 纵向对比 我们可以把最近30天的成交额显示在坐标轴上,这样就可以很明显的看到最近
我特别不喜欢装逼的产品经理,看文章也一样不喜欢华而不实的。所以督促自己写文章时,把懂的、经历过的能细就写的尽量详细;不懂的就去学,然后把整理的笔记分享出来,数据分析方面我涉入不多,内容由于缺少实战经验,会比较基础和理论,希望同样对你有帮助。 1. 明确数据分析的目的 做数据分析,必须要有一个明确的目的,知道自己为什么要做数据分析,想要达到什么效果。比如:为了评估产品改版后的效果比之前有所提升;或通过数据分析,找到产品迭代的方向等。 明确了数据分析的目的,接下来需要确定应该收集的数据都有哪些。 2
过去,是用渠道换流量的时代,大部分的公司都将流量增长作为主要的商业模式来获取用户,运营中,基本只关注用户数、日活、月活、留存用户数等概要性数据。但中国互联网的人口红利在逐渐消失,我们慢慢发现80%的流量实则创造了20%的价值,概要性数据与企业经营的产品、用户的留存度关联性并不大。而完善商业模式的企业,能利用20%的流量创造80%的价值,深掘数据成为这其中的源动力。 互联网,从流量时代走向经济化运营 此前,中国互联网一直处于人口红利时代,企业将注重流量增长作为主要的商业模式,对于用户如何使用自家的产品,用户如
SAS数据分析软件是一款基于Windows平台的商业数据分析软件,它能够实现从数据收集、处理、建模到结果展示的一整套数据分析流程。该软件的优越性能和数据安全性得到了广泛的认可和应用。这篇论文将探讨SAS数据分析软件的独特竞争力和使用方法,并使用实际案例进行说明。
目录 一、认识数据——产品经理与数据分析 1.1 数据的客观性 1.2 面对数据的智慧 1.3 数据分析中的误区 二、获取数据——产品分析指标和工具 2.1 网站数据指标 2.2 移动应用类数据指标 2.3 电商类数据指标 2.4 UGC类数据指标 三、分析数据——产品数据分析框架 3.1 基本分析方法 3.2 数据分析框架——AARRR 3.3 数据分析框架——逻辑分层拆解与漏斗分析 3.4 数据
在数据分析中,数据分析思维是框架式的指引,实际分析问题时还是需要很多“技巧工具”的。就好比中学里你要解一元二次方式,可以用公式法、配方法、直接开平方法、因式分解法。
最近听到大家说的最多的话就是,在工作中总是没有数据分析思路,我应该怎么办呢?今天就来给大家分享一下,如何锻炼自己的数据思维,还有实例模型讲解哦~
随着数据分析能力的提高,预测分析正演化为一种有力的工具,可以大大提升预测效率以及运营和绩效。但挑战在于,汽车制造商是否能玩转这些海量的知识和经验数据。数据分析可以把这些信息融合起来——不论是“机器可读的”数据集,还是非结构化数据如视频、录音或文本。只要处理得当,效果将令人称奇。以下总结了文中的主要观点和发现:
众所周知,通过计算每时每刻都会产生大量的用户数据。通过社交网络数据库和GPS(全球定位系统),每个人使用某些应用程序时所在的位置,以及他们的行为,观点,兴趣和所有需求都被搜索引擎记录了下来。
1、明确分析的目标 做数据分析,必须要有一个明确的目的,知道自己为什么要做数据分析,想要达到什么效果。比如:为了评估产品改版后的效果比之前有所提升;或通过数据分析,找到产品迭代的方向等。 明确了数据分析的目的,接下来需要确定应该收集的数据都有哪些。 ◆ ◆ ◆ 2、收集数据的方法 说到收集数据,首先要做好数据埋点。 所谓“埋点”,个人理解就是在正常的功能逻辑中添加统计代码,将自己需要的数据统计出来。 目前主流的数据埋点方式有两种: 第一种:自己研发。开发时加入统计代码,并搭建自己的数据查询系统。 第二种
数据分析在保险行业的运用 由于客户的价值我们可能直接无法得到,这可能需要通过客户的属性信息或行为信息来判断。所以通过客户数据来判断客户价值,进行客户价值管理是未来的趋势,而数据分析就是这一方法的重要技术手段。现在数据分析可以说在商业中的应用越来越广泛,尤其是在互联网、通讯、金融、零售业中的应用,自上世纪数据分析技术在美国应用以来,现在已推广到全世界更多的行业之中。上世纪90年代末数据分析这一概念随着沃尔玛啤酒与尿布的典型案例来到中国来。那么数据分析技术在国内应用如何呢?在保险行业的应用又会如何呢? 一、数据
客服系统是企业与客户沟通的重要桥梁,它通过提供多渠道接入、自动化服务、数据分析等功能,帮助企业提升客户服务质量和效率。
在当今高度数字化的商业世界中,数据分析技术已成为企业竞争力的关键。它们不仅能够提供深入的市场见解,还能够优化运营效率和客户体验。特别是在银行业,这些技术的应用对于理解和满足日益复杂的客户需求至关重要。
业务指标分析是企业运营中不可或缺的一环,通过对各项关键指标的深入剖析,我们能够更好地了解企业的运营状况,发现潜在问题,进而制定相应的策略来优化业务流程、提升经营效率。
MySQL是一种常用的关系型数据库管理系统,可以用来存储和管理大量的数据。除了存储数据,MySQL还可以用来进行数据分析。在本文中,我将介绍如何使用MySQL进行数据分析,并提供一些实际的示例。
笔者只是一个客户端工程师,不是专业的数据分析师,只是碰巧在工作中与数据打交道比较多,做过客户端的数据传输SDK,客户端无埋点SDK,写过hive脚本,也折腾过spark,也做过不同通道数据的差异分析,仅此而已。本文试图从笔者自身有限的经历中,尝试给大家普及些数据分析的入门知识。
在全球书市一片萎靡之中,一家创建于80年代的实体书店,在日本拥有1400家门店,60%以上的日本人是它的会员,它在东京的门店,每月营业额上亿日元(相当于600多万人民币),被誉为“最美书店”和“日本新朝圣地”在网上反复刷屏,更让人费解的是,即使人人都在网上买书,它仍然被列为会特地前往的场所。这家神奇书店,就是茑屋书店。
最近这段时间花了不少时间整理了关于数据采集、数据分析、数据挖掘的案例,这些案例包括了海底捞、银行信用分析、商务酒店分析、香水单品的市场竞争分析、渠道分析、客户特征分析、销售和运营数据分析,包括比较详细介绍数据来源、数据处理、数据分析、数据应用等数据分析知识。 一、银行信用卡欺诈与拖欠行为分析: 1、客户信用等级影响因素 1.1客户信用卡申请数据预处理 1.2信用卡申请成功影响因素 2、信用卡客户信用等级影响因素 3、基于消费的信用等级影响因素 4、信用卡欺诈判断模型 4.1基于
“企业如果在建立客户数据系统上投资过多,那么投入到市场营销和核心产品的资金就会较少。”Gartner的这句话已经在自己建立数据系统的企业中验证过了,这些企业大多经历了耗时、费力和烧钱的煎熬。要想构建一个拥有数据采集、分析、运营且动态更新的客户数据系统并非易事,主要是因为:
数据分析是指运用适当的方法和技巧对数据(一般数据量较大)进行分析,从看似杂乱无序或毫无关联的数据中挖掘出有价值的信息,总结出隐藏在数据背后的规律。
描述型分析:发生了什么?这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。
今天我们来和大家聊一聊一个新话题,一个对于企业业务发展十分关键的东西 —— 指标。
续上一篇《数据分析对企业有啥用》之后,我们继续来讨论一个深层次的话题:数据分析师的工作绩效到底该怎么定。这个又是一个很蛋疼的话题,甚至很多从业很久的老鸟都没想明白,也很容易中坑。
掌握理论知识和编程知识可以被看作入职数据分析师的“敲门砖”。掌握了这些知识,表示候选人对于成为数据分析师有了良好的准备,可以说“万事俱备,欠东风”,而“东风”就是一些实际工作内容和相应的技巧。
距离 GPT-4o 发布几天后,OpenAI 又上新了。这次,他们瞄准 ChatGPT 的数据分析功能,那些折线图、柱状图、饼图等分析起来毫无压力。
在某种程度上,这是在线教育企业的挑战也是一个新机遇,作为以互联网为核心的在线职业教育平台,嗅到这个增长机会后,迅速反应,在各平台疯狂进行广告轰炸,比如手机APP的开屏宣传、各大搜索引擎的信息流广告等,无处不在的都能看到在线教育的身影。
前几天,有个搞运营的小伙伴向我吐槽,熬了几个夜做出来的用户画像被老板说垃圾。不管是市场人员、运营人员还是产品经理,都躲不开“用户画像”,但经常听到伙伴们抱怨,这个词太大了,根本不知道从哪里下手。 老李给大家归纳了一套用户画像学习方法,从理论到实践,教大家怎么做好用户画像。 ◆ 什么是用户画像? 简单来说,用户画像=给用户打标签。举个例子,如果你关注老李的头条,每天看的都是数据分析类的内容,那你就会被打上“数据分析”、“职场”等标签,下次打开头条,给你推荐的就是“如何转行数据分析”、“数据分析必备工具”等文章
上一期我们谈到通过WEB应用防火墙技术来防护邮箱系统自身的安全问题,由此解决了应用层防护不当导致的邮箱系统被黑客技术入侵的问题,本期我们介绍针对邮箱系统整体大数据审计分析平台的架构部署平台的技术架构以及邮件内容的异常分析。通过本期的介绍您将了解到邮箱大数据处理的全生命周期以及技术架构,另外,了解如何对邮箱业务异常进行基本的判断。 01 邮箱大数据分析处理过程 大数据中心重点实现企业网络环境安全类、管理类、流量数据以及资产、用户的基本数据的采集。数据采集层实现全流量审计引擎、日志采集引擎和资产、用户数据的
大数据文摘翻译作品 翻译:吴涤,宋松波 如需转载,请后台留言申请授权 欢迎各种“小语种”的朋友,加入大数据文摘翻译志愿者团队,分别回复“翻译”和“志愿者”可了解更详细信息。 大数据,尽管每个人都在谈论,许多公司也已经着手发展,但现在还很难确切地知道它究竟有多大的功效。安永(Ernst & Young)对150家法国企业进行了一项调研,考察它们收集与使用客户数据的方式,期间遇到的困难,以及数据这项新资产对业绩增长与战略发展的影响。 即使现在大数据以其诸多优势有着大批拥护者,大数据革命并没有真正扩散到全球电
大数据对绝大部分人来说就好比“叶公好龙”里面的龙,听说过没见过。大家都知道大数据很流行,但是真正理解大数据的逻辑的人仍然不多。我觉得这个问题更多是出在大数据的推广者自己身上,写的文章术语太多,谈理论太多,不接地气,以至于让普通人看不懂。当然这也不能怪他们,能把大数据玩转的基本都是理科生,写文章并非他们擅长的事情。今天我尝试着就用1000字的篇幅,把大数据写得让文科生都能看明白(注:我就是文科生)。
从政府引导到行业自我发展,大数据都是一个充满光和机遇的领域。作为传统行业,零售行业自然也将面临这一次挑战,而作为支撑大数据与零售重要特性的CRM系统也迎来了一个关键转型。那么,传统行业的零售行业CRM
但是,仔细思考一下,得到这个结论,对改善流失问题有什么具体的指导意义吗?显然,在资源和时间有限的情况下,这个整体性的流失率没有太大的指导作用,因为根据这个指标,你只能把资源用在所有流失客户身上,这显然不是精细化的运营。
当今市场上有无数种的无代码分析工具,允许开发人员和非开发人员使用拖放的方式构建图表和仪表盘。
随着经济全球化和技术革新的加速,银行业务正面临前所未有的挑战和变革。在这个数字化时代,银行业的传统运作模式受到挑战,特别是在零售贷款领域。这一领域的核心挑战在于如何在激烈的市场竞争中实现有效的营销策略,同时保持严格的风险控制。
区块链游戏在开发运营过程中需要追踪的关键指标包括红馆加密市场数据,DAU、MAU 和用户留存相关的用户数据、社交媒体参与数据,以及游戏内资产等生态系统相关数据。
如果数据分析脱离业务,那么数据分析无任何意义,数据分析师或者数据分析部门于企业而言没有任何存在的价值。
在Google Drive和Microsoft OneDrive直接与表格和图表交互,并直接添加文件。
大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。 现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。 通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。 大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。 以前的商业
大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。 现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。 通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。 大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。 以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得
金融科技&大数据产品推荐:Stratifyd大数据智能分析平台
分享九个数据分析的方法。” 一、关联分析 关联分析,也叫作“购物篮分析”,是一种通过研究用户消费数据,将不同商品之间进行关联,并挖掘二者之间联系的分析方法。 关联分析目的是找到事务间的关联性,用以指导决策行为。如“67%的顾客在购买啤酒的同时也会购买尿布”,因此通过合理的啤酒和尿布的货架摆放或捆绑销售可提高超市的服务质量和效益。关联分析在电商分析和零售分析中应用相当广泛。 关联分析需要考虑的常见指标: 支持度:指A商品和B商品同时被购买的概率,或者说某个商品组合的购买次数占总商品购买次数的比例。
领取专属 10元无门槛券
手把手带您无忧上云