来源:数据猿 作者: HCR 大数据平台 马亮 博士 ---- 如今,大数据已不再停留于概念畅想阶段,对于大数据的认知与应用也越来越广泛深入,不管是政府还是企业都在加快行业建设与布局,资本市场的助推更是加速了这一进程。 本月初,IBM宣布收购大数据供应商Cleversafe以加强其大数据分析服务能力;10月14日,提供企业智能服务的大数据公司EverString获得B轮6500万美金融资,创下全球大数据商业智能领域最大的一起融资。全球范围内的资本加速入局,一时间让大数据商业应用领域的飓风再次强势来袭!
如今,大数据已不再停留于概念畅想阶段,对于大数据的认知与应用也越来越广泛深入,不管是政府还是企业都在加快行业建设与布局,资本市场的助推更是加速了这一进程。全球范围内的资本加速入局,一时间让大数据商业应用领域的飓风再次强势来袭!
大数据的概念在最近的几年迅速升温,成为最热门的一个概念。大数据是事关经济社会发展全局的战略性产业,大数据技术为社会经济活动提供决策依据,提高各个领域的运行效率,提升整个社会经济的集约化程度。企业和政府机构都纷纷加大对大数据领域的投入,但是普遍存在着应用的焦虑,甚至是有些茫然。大数据带来的不仅仅是大的机遇,同时也是大的挑战,这需要我们对大数据挖掘的意义进行更加深刻的探索。
在互联网逐渐步入大数据时代后,不可避免的给企业及消费者行为带来一系列改变与重塑。其中最大的变化莫过于,消费者的一切行为在企业面前似乎都将是“可视化”的。随着大数据技术的深入研究与应用,企业的专注点日益聚焦于怎样利用大数据来为精准营销服务,进而深入挖掘潜在的商业价值。于是,“用户画像”的概念也就应运而生。
用户画像,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。
文|鲍忠铁,TalkingData首席金融行业布道师,上海大数据产业联盟金融行业专家,金融行业大数据实践推动者。
活动概况 ---- 活动主题:客户标签画像推荐系统 活动嘉宾:李永、符鹏飞 活动对象:信息主管CIO、业务部门主管、工程师、SI人员 活动时间: 2015年9月19日14:00~17:30 活动地点:罗湖世界金融中心A座5楼(深南东路4003号) 主办承办:大数据厂商联盟、PPV课 嘉宾介绍及分享内容 ---- 嘉宾:李永——大数据厂商联盟秘书长 分享内容:《怎样规划部署大数据分析应用》 1,怎样部署客户(消费者、会员)统一视图(客户标签与360度画像) 2,怎样部署产品标签画像与订单分析 3
文|鲍忠铁(微信号:daxiakanke),TalkingData首席金融行业布道师,上海大数据产业联盟金融行业专家,金融行业大数据实践推动者。鲍忠铁同时也是36大数据的专栏作者。 进入移动互联网时代
什么是用户画像? 用户画像(User Profile),作为大数据的根基,它完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础,奠定了大数
用户画像(User Profile),作为大数据的根基,它完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础,奠定了大数据时代的基石。 用户
前言 作为国内知名的房地产开发商,绿城经过24年的发展,已为全国25万户、80万人营造了美丽家园,并将以“理想生活综合服务提供商”为目标,持续为客户营造高品质的房产品和生活服务。 2017年,绿城理想生活集团成立,围绕客户全生活链、房屋全生命周期,为客户提供从买房子到房屋的保养维护,再到业主全方位的生活服务。为此构建了绿城+App生活服务平台、房产营销数字化平台及房屋4S服务平台,这些系统的构建为业主购房及生活服务提供了极大的便利,部分系统不仅开放给绿城客户、业主使用,同时也服务于非绿城的客户。通过一整套垂
文|鲍忠铁,TalkingData首席金融行业布道师,上海大数据产业联盟金融行业专家,金融行业大数据实践推动者。 进入移动互联网时代之后,金融业务地域限制被打破。金融企业没有固定业务区域,金融服务面对所有用户是平的。 金融消费者逐渐年轻化,80、90后成为客户主力,他们的消费意识和金融意识正在增强。金融服务正在从以产品为中心,转向以消费者为中心。所有金融行业面对的最大挑战是消费者的消费行为和消费需求的转变,金融企业迫切需要为产品寻找目标客户和为客户定制产品。 一、用户画像背后的原因 1、金融消费行为的改
导读:金融是与我们数据人紧密关联的属性,我们总是要与钱打交道的。说道金融,自然会想到银行。大数据能够为银行做些什么呢? 随着移动互联网、云计算、物联网和社交网络的广泛应用,人类社会已经迈入一个全新的“
当前借助大数据技术,针对当前新冠肺炎疫情防控需要生成的健康码成为随身数字“通行证”,方便广大市民及进(返)各城市查询自身防疫相关健康状态的识别码,即便捷了防疫检查,也真正实现了大数据技术的价值应用,便捷服务市民。健康码的应用也让大数据更形象的普及推广,更深刻的理解了大数据的价值。
通常每年的一季度,都是银行的“开门红”时间,银行往往会在此时加大营销力度,做大业务量。但2020开年以来,受新冠肺炎疫情的影响,民众居家隔离,对手机、电脑等智能终端依赖极强,各大银行线下网点服务量断崖式下跌。
数据猿导读 ITFIN作为互联网技术与金融功能相结合的新兴领域,在开放的互联网平台上形成功能化的金融业态及其服务体系,大大降低交易成本,且手续简单、收益较高、周期短。 本篇案例为数据猿推出的大型“金融
进入移动互联网时代之后,金融业务地域限制被打破。金融企业没有固定业务区域,金融服务面对所有用户是平的。 金融消费者逐渐年轻化,80、90后成为客户主力,他们的消费意识和金融意识正在增强。金融服务正在从以产品为中心,转向以消费者为中心。所有金融行业面对的最大挑战是消费者的消费行为和消费需求的转变,金融企业迫切需要为产品寻找目标客户和为客户定制产品。 一、用户画像背后的原因 1、金融消费行为的改变,企业无法接触到客户 80后、90后总计共有3.4亿人口,并日益成为金融企业主要
进入移动互联网时代之后,金融业务地域限制被打破。金融企业没有固定业务区域,金融服务面对所有用户是平的。 金融消费者逐渐年轻化,80、90后成为客户主力,他们的消费意识和金融意识正在增强。金融服务正在从以产品为中心,转向以消费者为中心。所有金融行业面对的最大挑战是消费者的消费行为和消费需求的转变,金融企业迫切需要为产品寻找目标客户和为客户定制产品。 一、用户画像背后的原因 1、金融消费行为的改变,企业无法接触到客户 80后、90后总计共有3.4亿人口,并日益成为金融企业主要的消费者,但是他们的金融消费习惯正
数据可视化就是把枯燥的数据用图形化的方式展示出来,从而能够更好地理解数据背后的含义。数据可视化有广义和狭义两种理解,狭义的理解就是将数据用图表的形式表达出来,广义的理解则涵盖了信息图形化(Infographics)。广义和狭义的定义都是用图形来表达数据背后的逻辑,图形化后的数据所传达的含义更加直观,含义更加丰富。而且数据可视化提高了对数据差异化的敏感度。
进入移动互联网时代之后,金融业务地域限制被打破。金融企业没有固定业务区域,金融服务面对所有用户是平的。 金融消费者逐渐年轻化,80、90后成为客户主力,他们的消费意识和金融意识正在增强。金融服务正在从以产品为中心,转向以消费者为中心。 所有金融行业面对的最大挑战是消费者的消费行为和消费需求的转变,金融企业迫切需要为产品寻找目标客户和为客户定制产品。 一、用户画像背后的原因 1、金融消费行为的改变,企业无法接触到客户 80后、90后总计共有3.4亿人口,并日益成为金融企业主要的消费者,但是他们的金融消费习惯正
导读 在互联网逐渐步入大数据时代后,不可避免的给企业及消费者行为带来一系列改变与重塑。其中最大的变化莫过于,消费者的一切行为在企业面前似乎都将是“可视化”的。随着大数据技术的深入研究与应用,企业的专注点日益聚焦于怎样利用大数据来为精准营销服务,进而深入挖掘潜在的商业价值。于是,“用户画像”的概念也就应运而生。 用户画像(UserProfile),作为大数据的根基,它完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础,奠定了大数据时代的基石。 交互
数据猿导读 Datatist(画龙科技)CMO董飞告诉数据猿记者:“市场急需能够进行数据采集、建模、分析和实现一站式营销的人才和云产品;市场也需要真正以运营优化为目标,为企业提供决策指导的产品”。 记
本文讨论了用户画像的重要性,认为只有依靠大数据,用户画像才更有说服力。同时指出,大数据本身不是为了总结,而是为了指导实践。在具体的应用场景中,通过用户画像对用户进行个性化处理,可以大大提高工作效率。
投稿人|袁峻峰 编辑|bian zheng 本文系大数据文摘获作者授权发布,转载具体要求见文末 大数据文摘欢迎高质量的投稿,投稿邮箱:tougao@bigdatadigest.cn ◆ ◆ ◆ 摘要 本文是前文[4]提出基于行为事件的客户画像的理论探讨。 客户历史行为事件构建客户画像可以认为是”哈耶克将’自我’理解为能够统一表达全部意识事件的时空框架”[3]的一种应用。 在此基础上,哈耶克构建了“统一表达全部意识事件的时空框架”[3](CommonSpatio-Temporal Framework)
Informa Telecoms & Media 2013年的调查结果显示,全球120家运营商中约有48%的运营商在开展大数据业务。该调研公司表示,大数据业务的成本平均占到运营商总IT预算的10%,并且在未来5年内将升至23%左右,成为运营商的一项战略性优势。OVUM报告显示,大数据应用的主要需求包括商机挖掘、竞争情报、客户维系、收入提升、减少开支、改善运营管理等,其中有50%以上和市场前端工作的开展息息相关。笔者从运营商职能划分的角度来分析大数据对运营商市场工作的影响。 第一,影响产品研发的模式。电信产品
移动互联网时代,精细化运营逐渐成为企业发展的重要竞争力,“用户画像”的概念也应运而生。用户画像是指,在大数据时代,企业通过对海量数据信息进行清洗、聚类、分析,将数据抽象成标签,再利用这些标签将用户形象具体化的过程。用户画像的建立能够帮助企业更好地为用户提供针对性的服务。
CRM如何通过数据优化找到客户的真正需求 如今,随着科学技术的飞速发展,社会已经进入了一个大数据与人工智能相结合的时代。更多的企业在商业运营上也开展了新型模式,以适应新时代的需求。在这个云计算、物联网、互联网充斥整个社会的大时代背景下,企业在开展客户关系管理的过程中,纷纷上线了一款专业的CRM软件,以深挖客户的需求,再以合适的产品或者服务去满足客户,从而赢得客户的订单。 那么CRM是如何通过数据优化,找到客户的真正需求的呢? 定制化功能一、借助大数据技术进行用户画像CRM可以将企业的所有客户资料进行收集,包括姓名、年龄、性别、职业、单位、头衔、商品需求、个性化偏好,等等,如此就形成了一个海量的客户数据库,那么借助于大数据技术,就可以对所有的客户资料进行分析和统计。比如对于一家售卖办公用品的企业来说,通过CRM管理系统与自己企业的网站、商城对接,就可以利用大数据技术,来统计哪些客户购买了办公耗材,哪些客户购买了文具礼品,哪些客户购买了电子设备,并且购买的数量各是多少,购买的时节是在平时,还是特定的节日等,那么如此,一个完整的用户画像就出来了。如此,就可以将分析好的客户贴上标签,以便对客户有更好的了解。 定制化功能二、将客户进行细分,找准精准营销渠道 当然,对于客户群体进行细分,是一个必要的环节。CRM可以根据设定的规则,按照所统计、分析好的各个客户画像,将客户进行群体细分。接下来就可以深入分析各个客户群体的精准需求,如此,就可以制定相适应的营销活动,找准营销渠道进行营销,以吸引客户进行下单购买。比如针对于三月开学季,那么文具企业就可以根据统计整理出的客户,来进行批量文具的售卖活动,比如各大文具店,如此精准的渠道营销,将会使得线索转换率大大提升。 定制化功能三、实现个性化需求推送,以提升产品销量 对于电商化的商业模式而言,CRM同样可以实现多种数据的收集,比如可以实现按照时间顺序记录客户的行为,客户在什么时间登录了网站,从哪个落地页进入的网站,浏览了哪些产品,停留了多长时间,总共进入了几次网站,购买了哪些产品,评论了哪些产品等,都可以详细记录。如此,对于分析人群的画像及需求,就可以实现科学化和细节化。那么接下来就可以进行个性化的营销活动,实现个性化的信息推送。比如对于长期浏览、购买同一个品牌护肤品的人群来说,当新品上市时,就可以将信息精准推送给她,如此精准地推送,就可以大幅度提升产品的销量。 由此可见,在物联网、大数据、移动互联网、人工智能大力发展的时代,企业引进一款CRM系统,能够大力优化企业用户运营数据,找准用户的深度需求,而这正是一个企业长久发展的关键竞争力。
作者 CDA 数据分析师 背景 刘路老师之前主要是做政府数据分析,目前主要服务企业。他认为政府和企业的数据分析没有本质区别,都是有目的的进行收集、整理、加工和分析数据,提炼有价值信息的过程,都是为
数据分析在电信行业的应用 1 大数据运营已为大势所趋 电信与媒体市场调研公司Informa Telecoms & Media在2013年的调查结果显示,全球120家运营商中约有48%的运营商正在实施大数据业务。该调研公司表示,大数据业务成本平均占到运营商总IT预算的10%,并且在未来五年内将升至23%左右,成为运营商的一项战略性优势。可见,由流量经营进入大数据运营已成为大势所趋。 2 采取大数据运营的原因 第一,数据资源的先天优势。电信运营商拥有多年的数据积累,在掌握用户行为方面有先天优势,主要体现在数据
数据显示,中国大数据IT应用投资规模以五大行业最高,其中以互联网行业占比最高,占大数据IT应用投资规模的28.9%,其次是电信领域(19.9%),第三为金融领域(17.5%),政府和医疗分别为第四和第
背景 用户流量从搜索引擎为入口的增量时代到移动互联网普及人口红利不再的存量时代,这个变化对每个公司的获客成本,运营思路都产生了很大的影响,在流量日益枯竭,获客成本越来越高的时代,伴随着大数据、精细化运营、人工智能、机器学习等一大波新技术和概念的崛起、普及,它们之间有何关联?如今互联网产品又该如何运营、攻城略地?本文介绍的用户画像或许能带来一点思路。 1、用户画像的作用与意义 1.1 作用 用户画像承载了两个业务目标:一是如何准确的了解现有用户;二是如何在茫茫人海中通过广告营销获取类似画像特征的新用户。比如在
本文转载自互联网金融干货 作者经过研发多个大数据产品,将自己形成关于大数据知识体系的干货分享出来,希望给大家能够快速建立起大数据产品的体系思路,让大家系统性学习和了解有关大数据的设计架构,很多人都看过不同类型的书,也接触过很多有关大数据方面的文章,但都是很零散不成系统,对自己也没有起到多大的作用,所以作者第一时间,带大家从整体体系思路上,了解大数据产品设计架构和技术策略,如需深入学习和了解互联网电商、互联网金融和大数据方面干货,核心底层技术及架构设计,可以关注微信公众号:互联网金融干货,有时间就会和大家分
电信与媒体市场调研公司Informa Telecoms & Media在2013年的调查结果显示,全球120家运营商中约有48%的运营商正在实施大数据业务。该调研公司表示,大数据业务成本平均占到运营商总IT预算的10%,并且在未来五年内将升至23%左右,成为运营商的一项战略性优势。可见,由流量经营进入大数据运营已成为大势所趋。 电信运营商拥有多年的数据积累,拥有诸如财务收入、业务发展量等结构化数据,也会涉及到图片、文本、音频、视频等非结构化数据。从数据来源看,电信运营商的数据来自于涉及移动语音、固定电话、固
我第一次知道用户画像是在学习数据挖掘的某节课堂上,当时对画像只有一个概念上的认识;工作后接触到了画像平台,当时第一反应是在平台上查询一下自己的画像信息,发现查询结果非常准确,自此对于平台背后的画像技术产生了很大的兴趣;在之后工作中有幸参与了画像平台的建设工作,对于用户画像的认识更加真切。
作者:丁伟 王题 刘新海 韩涵 感谢丁伟的投稿,大数据文摘对优质内容一向渴求,欢迎大家投稿。 内容提要:手机用户画像是电信运营商实现“数据驱动业务与运营”的重要举措。首先,介绍了手机用户画像过程中对个人隐私保护的方法,然后分析手机用户画像的数据来源与大数据实现技术,最后,通过数据样本实例分析手机用户画像在个人征信中的应用。 ◆ ◆ ◆ 引言 随着计算机网络技术的不断发展,“数据即资源”的大数据时代已经来临。用户画像是电信运营商为了避免管道化风险,实现“数据驱动业务与运营”的重要举措。用户画像与应用
作者经过研发多个大数据产品,将自己形成关于大数据知识体系的干货分享出来,希望给大家能够快速建立起大数据产品的体系思路,让大家系统性学习和了解有关大数据的设计架构。 很多人都看过不同类型的书,也接触过很多有关大数据方面的文章,但都是很零散不成系统,对自己也没有起到多大的作用,所以作者第一时间,带大家从整体体系思路上,了解大数据产品设计架构和技术策略。 大数据产品,从系统性和体系思路上来做,主要分为五步: 针对前端不同渠道进行数据埋点,然后根据不同渠道的采集多维数据,也就是做大数据的第一步,没有全量数据,何谈
前面几章说了 腾讯云大数据技术介绍,分别介绍了:大数据的存储,大数据的使用,和 实时并发数据处理。这是一套完整的体系,需要综合的来运用才能体现出商业化的最大价值。
曾经有一个笑话“隔着互联网,没有人知道对面是不是一条狗。”如今再看这个笑话却已是有几分老古董的味道,互联网不再是蒙住人们双眼的纱布,反而透过这个介质我们的生活习惯,兴趣偏好等等都会展露无遗。可以说,“隔着互联网,所有人都知道对面是条哈士奇。”这意味着随着信息技术的发展,数字化的虚拟世界逐步和现实世界进一步融合,虚拟世界的影响力会不断地渗透到现实,这样的未来有点像电影《黑客帝国》的场景,每个人都是由0,1这两个数字拟合的具象物,不论我们在网络上每一次购买,收藏,评论,还是在小说网站的搜索,放入书架都会在我们的
包银消费金融总经理助理汤向军:消费金融行业的大数据
10月26日,第一财经旗下DT财经发起的数据社群——数据侠联手复旦大学大数据研究院人文社科数据研究所,共同举办了以“大数据商业应用解析与未来展望”为主题的公开课。课上,数据侠联盟成员、中国电信大数据产品经理、2016年SODA大赛(上海开放数据创新应用大赛)冠军汪科科,以中国电信的海量数据为例,向复旦大学的同学们与数据侠社群的数据爱好者们介绍了大数据商业化的方法论。
不管是针对消费者的宣传还是营销,或者是针对公司的管理运营,大数据在其中的作用从本质来讲就是在构造“用户画像”。 近年来,在智能化趋势的推动下,社会经济的众多领域都发生了翻天覆地的变化,其中尤其以金融、零售等最为明显。以零售业为例,随着移动互联网的出现和快速发展,传统的商超、店铺渐渐从线下走到线上变身为“电商”,之后在大数据、人工智能等技术的加持下,蜕变过一次的零售业1.0又经过了2.0到3.0的快速迭变。 其实,类似以上的过程同时在很多领域不断上演,而作为企业成功蜕变的重要手段和基本因素,“大数据”在其中日
【导读】2017年 11月4日,大数据系统与应用研讨会在中科院计算所举行。会议邀请了中科院计算所程学旗老师和其他来自联想、京东、美团点评、小米等一线互联网公司大数据领域的专家,通过主题演讲,分享并深度探讨了大数据技术在业界一线的最佳实践和创新应用。 小米大数据总监司马云瑞为大会带来了题为《小米用户画像的演进及应用》的分享报告,循序渐进地分享了小米用户画像系统的建设和应用。小米公司经过7年的发展,积累了海量的日志和用户行为数据。基于全生态、多维度的数据资产,构建了丰富的用户画像体系,在业务运营、广告、互联网
信息技术和互联网不仅改变了消费者,也改变了信息传递的方式,以消费者为中心的、数据驱动的泛零售业态孕育而生。
作者刘永平经过研发多个大数据产品,将自己形成关于大数据知识体系的干货分享出来,希望给大家能够快速建立起大数据产品的体系思路,让大家系统性学习和了解有关大数据的设计架构。 很多人都看过不同类型的书,也接触过很多有关大数据方面的文章,但都是很零散不成系统,对自己也没有起到多大的作用,所以作者第一时间,带大家从整体体系思路上,了解大数据产品设计架构和技术策略。 大数据产品,从系统性和体系思路上来做,主要分为五步: 针对前端不同渠道进行数据埋点,然后根据不同渠道的采集多维数据,也就是做大数据的第一步,没有全量数据,
领取专属 10元无门槛券
手把手带您无忧上云