版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
Charts是做什么的: 在我们平时的开发中,当使用到一些统计图表的时候,我们该怎样去做那些柱形的统计图、那些折线统计图、扇形统计图,亦或是你在做金融相关的项目那些股票走势等等的UI我们改怎样做?上面说的这么多全都可以用今天我们说的主角——Charts来解决,这次我们说这个就从它的集成开始,再到对它一些简单的说明,最后用几个Demo来认识一下这个三方,在最后我也会相应的给出下面几个Demo的源码供大家参考。 Charts在git的地址先给大家 来看看它的一个集成: Charts是
当饼状图数据比较多的时候 这个引导线显得比较杂乱无章了 这个时候需要去掉Echarts饼状图的引导线
pygal[1] 是一个基于SVG的动态可视化Python库,该库枚举了各种常用不常用的图表类型,满足基本的可视化需求,可以画简单的地图。其特点是接口易用,有很多简化的写法,方便地绘制出统计图表,可以生成迷你图,有基本交互,不需要额外的语句,鼠标移动到图表上有文本标签强化效果。但图表不能直接渲染到notebook里,不能合并多个图,例如柱+折线形成复合图,因此使用范围还是比较有限。
Excel 基本可以实现一维和二维图表的绘制,今天先总体介绍Excel的基本图表类型和图表选择的基本原则。
今天跟大家分享的是水晶易表系列6——统计图的钻取功能。 统计图通过启用钻取功能之后,可以通过鼠标单击该图表的单一序列,使图表序列成为动态选择器,鼠标单击之后会将对应序列数据传递到一个定义好的单元格位置,而利用该单元格区域位置数据所创建的图表就可以接收到动态数据源,进而完成动态交互。 这种交互方式在前几篇的案例中均有讲解,第一篇中的标签式菜单通过通过设定数据源以及数据插入位置,某种程度上具有钻取功能(只是标签式菜单本事就是作为选择器,并不展示任何数据信息)。 同样是在案例1中通过设置柱形图/折线图的向下钻取功
按照知识共享署名-非商业性使用 4.0 国际协议进行许可,转载引用文章应遵循相同协议。
利用 Google Chart API 可以制出各种统计图表,当前支持线形图、柱形图、饼形图、散点图、曲线图。Google Charts API Code 页面有对这个 API 使用的详细说明,但是还略显繁琐。今天发现有人开发了一个这个方面的 PHP 类,并且还包括三个例子,我就挑选一个例子结合自己的一个项目给大家讲解下如何使用:
最近做的项目需要用到数据分析,图表显示,之前做项目的时候用到过highcharts,不过也只是简单的会用而已,然后再网上查了查highcharts的优点:
之前的文章一图入门Matplotlib绘图中我们学习了matplotlib中常见图表元素的绘制方法,所有操作都通过可以调用plt的函数实现。本节继续来学习使用matplotlib中生成各种常见的统计图表。后台回复“统计图一”可以获取本文全部代码。
Qt 是一个跨平台C++图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍QCharts二维绘图组件的常用方法及灵活运用。
QtCharts 组件是QT中提供图表绘制的模块,该模块可以方便的绘制常规图形,Qtcharts 组件基于GraphicsView模式实现,其核心是QChartView和QChart的二次封装版。
柱状图是描述统计中使用频率非常高的一种统计图形。它有垂直样式和水平样式两种可视化效果。这里我们主要介绍柱状图的应用场景和绘制原理。
MPAndroidChart是一款基于Android的开源图表库,MPAndroidChart不仅可以在Android设备上绘制各种统计图表,而且可以对图表进行拖动和缩放操作,应用起来非常灵活。MPAndroidChart同样拥有常用的图表类型:线型图、饼图、柱状图和散点图。
1、代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>Document</title> <style> bod
在现代工作环境中,信息的处理和管理是至关重要的。表格是一种常见的数据呈现和整理工具,被广泛应用于各行各业。然而,随着技术的不断发展,市场对表格控件的需求也越来越高。随着工作效率的重要性日益凸显,一款高效的表格控件成为了开发者们的首选,因此本文小编将从葡萄城公司的纯前端表格控件——SpreadJS的视角出发,为大家介绍如何充分利用这一控件来提升开发效率和用户体验。
在绘图区域中可能会出现多个图形,而这些图形如果不加以说明,观察者则很难识别出这些图形的主要内容。因此,我们需要给这些图形添加标签说明,用以标记每个图形所代表的的内容。方便观察者辨识,这个标签说明就是图例。 同样,如果观察者想要清楚地了解绘图区域中的内容。就需要给绘图区域添加文本内容用以说明绘图区域的主要内容,标题就可以让观察者清楚地知道绘图区域的核心信息和图标内容。
一、描述统计 在数据分析的时候,一般首先要对数据进行描述性统计分析(Descriptive Analysis),以发现其内在的规律,再选择进一步分析的方法。描述性统计分析要对调查总体所有变量的有关数据做统计性描述,主要包括数据的频数分析、数据的集中趋势分析、数据离散程度分析、数据的分布、以及一些基本的统计图形,常用的指标有均值、中位数、众数、方差、标准差等等。 数据的集中趋势一般采用平均值、中位数表示。数据的离散程度一般采用方差、标准差表示。数据的分布情况一般采用直方图表示。 案例:北京房屋价格(数据文件:
饼图,或称饼状图,是一个划分为几个扇形的圆形统计图表,用于描述量、频率或百分比之间的相对关系。在饼图中,每个扇区的弧长(以及圆心角和面积)大小为其所表示的数量的比例。这些扇区合在一起刚好是一个完全的圆形。顾名思义,这些扇区拼成了一个切开的饼形图案。——维基百科
1.文件与数据 Tableau使用的数据结构必须是标准的关系型数据库中的二维表结构。 1.1 Tableau文件类型 文件类型 文件大小 使用场景 具体内容 数据源.tds 小 频繁使用的数据源 完整的数据源定义 数据提取.tde 大 数据源为远程,希望提高库性能 筛选出的部分或完整的源数据本地副本 工作薄.twb 小 默认保存方式 仅包括数据源定义和可视化图表定义,无源数据 工作薄.twbx 大 与无法访问源数据的用户分享工作结果 所有信息和源数据 1.2 数据整理操作 名称与重命名 更改数据类型:数值
👆点击“博文视点Broadview”,获取更多书讯 在制作图表时,你是否会纠结于选择那种图表来展示自己的数据更合适呢?本文就来对易混图表进行一下解析,帮助大家精准制表! 柱形图、条形图有什么不同 柱形图和条形图都是用来体现数据对比的图表。在没有深入分析这两种图表时,人们容易混淆两者的应用场景,认为这两种图表的区别只不过是柱形的方向不同,即一个横向、一个竖向,其实不然。 对这两种图表进行选择时,要从数据特征、展示工具等方面来进行分析,思路如图1所示。 图1 柱形图和条形图的选择分析思路 1.考虑数据名
图表设计是数据可视化的一个分支领域,是对数据进行二次加工,用统计图表的方式进行呈现。数据是事实或观察的结果,是对客观事物的逻辑归纳,通常一个具体的数字比一个模糊的说法更加具有可信度和说服力。但单纯的数字本身并不能提供足够的影响力,假设一个淘宝女装卖家3月份的成交金额是50万,这个数据本身并不能说明什么问题,但是当你加上4月份60万,5月份的成交金额70万等多个月的数据,通过折线图的方式呈现,可以判断出成交金额是上升趋势,再结合去年同时段的销售曲线进行对比和其他维度信息的补充(图1-1),可能推断出是因为换季所带来得销量增长,店铺可以考虑加大夏季款的上新。所以我们说图表是解读数字的一种强有力的手段。
Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表。
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的博客 🍊个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 🥭本文内容:Python Matplotlib库:统计图补充 ---- Python Matplotlib库:统计图补充 1.引言 2.直方图 3.箱线图 4.误差条图 5.小提琴图 6.尖峰栅格图 7.二维直方图/散点密度图 8.Hexbin散点图 9.扇形图 ---- 1.引言 上两期我们讲了 Matplotlib 库
点阵图表 (Dot Matrix Chart) 以点为单位显示离散数据,每种颜色的点表示一个特定类别,并以矩阵形式组合在一起。
单一职责原则:类的职责单一,不能将太多的职责放在一个类中,该原则是实现高内聚、低耦合的指导方针
随着业务的发展,越来越多的政企机构上了BI系统,通过数据分析辅助经营决策。国内外已经有不少发展相当不错的产品,作为一名资深的BI爱好者,这次我认真试用了目前市面上比较热门的2款国产BI工具,写下这篇测评。
是一种以长方形的长度为变量的统计图表。长条图用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析。长条图亦可横向排列。——维基百科
大数据文摘字幕组作品 翻译:Iris W、李文浩、龙牧雪 后期:龙牧雪 机器学习中,非凸优化中的一个核心问题是鞍点的逃逸问题。梯度下降法(GD,Gradient Descent)一般可以渐近地逃离鞍点,但是还有一个未解决的问题——效率,即梯度下降法是否可以加速逃离鞍点。 加州大学伯克利分校教授Michael I. Jordan(吴恩达的导师)就此做了研究,即,使用合理的扰动参数增强的梯度下降法可有效地逃离鞍点。在去年旧金山的O'Reilly和Intel AI Conference,他就此研究做了一次演讲。
上节之后有粉丝私聊觉得,平台右上角的“主页/退出” 按钮已经过时。所以我们本节首先来优化下。
实现一个Echarts图表中饼状图的指示线条,更加直观明确地看到统计效果。 写一个完整的demo:
本文系投稿作品 作者 | 陈屹 版权归作者所有,转载请联系作者 大数据文摘欢迎各类优质稿件 请联系tougao@bigdatadigest.cn 马云曾经说过『人类正从IT时代走向DT时代』。正如他说言,今天几乎所有的互联网公司背后都有一支规模庞大的数据团队和一整套数据解决方案作决策,这个时代已经不是只有硅谷巨头才玩数据的时代,是人人都在依赖着数据生存,可以说如今社会数据价值已经被推到前所未有的高度。 我作为一名前端工程师在阿里巴巴数据团队工作多年,深入了解数据生产加工链路与产品化。我们这群前端是与界面最
“GIS讲堂”第九课的内容为“地图统计图的实现”,下面就课程内容做一个详细的说明。
众所周知,数据统计图是论文或学术PPT的重要组成部分,而GraphPad Prism制作统计图是很便捷的。我强烈推荐大家使用。
今天要跟大家分享的专题是水晶易表选择器的高级用法——向下钻取与动态可见性。 本案例紧接系列6——熟练统计图中的钻取功能一篇,不同的是这里通过开启标签菜单的动态可见性控制四个图表的可见性,每个图表又通过
「字不如表,表不如图」想必大家都有过这样的经历,制作 PPT 、Excel 或者写文章时,遇到关于地理位置方面的内容需要描述,想配一张像文章开头那样的酷炫地图,可是吧,要么找不到合适的地图、找到了地图,可能地图本身不够高大上,终于地图问题解决了,又不知如何把自己的数据内容,添加上去,用专业的 GIS 软件吧,自己一时半会好像又玩不转;曲线救国,用 PhotoShop 吧, 操作繁杂费劲~~~
神经影像数据分析和解释需要结合多学科的共同努力,不仅依赖于统计方法,而且越来越多地依赖于与其他脑源性特征相关的关联,如基因表达、组织学数据、功能和认知结构。在这里,我们介绍了BrainStat,它是一个工具箱,包括(i)在体素空间和皮层空间的神经影像数据集中的单变量和多变量线性模型,以及(ii)死后基因表达和组织学的空间图谱,基于任务的功能磁共振成像元分析,以及几个常见静息态功能磁共振成像大脑皮层模板在内的多模态特征关联。统计和特征关联结合成一个关键的工具箱简化了分析过程并加速了跨模态研究。工具箱用Python和MATLAB实现,这两种编程语言在神经影像和神经信息学领域中广泛使用的。BrainStat是公开提供的,并包括一个可扩展的文件。
Matplotlib 是 Python 提供的一个绘图库,通过该库我们可以很容易的绘制出折线图、直方图、散点图、饼图等丰富的统计图,安装使用 pip install matplotlib 命令即可,Matplotlib 经常会与 NumPy 一起使用。
如上图所示,一般的涉及到的地图的统计涉及到上述所展示的三个状态:1、初始化状态;2、缩放后的状态;3、点击选中显示详情状态。第一种状态下,加载统计图,一般来说,在地图上显示的统计图只是一个趋势或者示意,详细的还得去点击显示;第二种状态,随着地图的缩放,地图统计图随着地图的大小变化;第三种状态,点击选中,在信息框显示详细的统计图的信息。
今天来探索一个问题,如何绘制一块扇形区域路径,并且校验触点是否落在 扇形区域 之中。这个问题对于绘制 饼图 及处理手势事件校验非常重要。
今天是读《pyhton数据分析基础》的第14天,今天读书笔记的内容为使用matplotlib模块绘制常用的统计图。 模块概括 matplotlib 是最基础的绘图模块,pandas和seaborn的绘图功能的使用依赖于matplotlib。 条形图 #绘制柱形图 from matplotlib import pyplot as plt #绘图数据 x=["a","c","d","e","b"] y=[11.5,18.6,17.5,14.3,10.8] #创建基础图 fig=plt.figure() #
以前介绍的工具大部分都受众较广,且涉及较多的统计变换分析,今天就给大家介绍一个小众的、但是在商务插图里常见的一个数据可视化工具包- 「ggbrick」
长得像饼图又不是饼图,长得像堆积簇状图又非簇状图,这种有着极坐标的怪异统计图,有着一个美丽的名字—南丁格尔玫瑰图。
EMF全称“Enhanced MetaFile”,这种格式是微软为了弥补WMF (Windows Metafile Format)格式的不足而开发的一种扩展图元文件格式,属于矢量文件格式。
本文为matlab自学笔记的一部分,之所以学习matlab是因为其真的是人工智能无论是神经网络还是智能计算中日常使用的,非常重要的软件。也许最近其带来的一些负面消息对国内各个高校和业界影响很大。但是我们作为技术人员,更是要奋发努力,拼搏上进,学好技术,才能师夷长技以制夷,为中华之崛起而读书!
一、数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。它是一个处于不断演变之中的概念,其边界在不断地扩大。主要指的是技术上较为高级的技术方法,而这些技术方法允许利用图形、图像处理、计算机视觉以及用户界面,通过表达、建模以及对立体、表面、属性以及动画的显示,对数据加以可视化解释。与立体建模之类的特殊技术方法相比,数据可视化所涵盖的技术方法要广泛得多。
今天继续跟大家分享关于水晶易表动态页面切换的案例。 该案例的仪表盘在技巧上没有新的东西,仍然是利用传统的单选按钮进行页面切换,同时对三个类型的图表数据对三个单值指标数据进行 多样化的展示。 以下是原
领取专属 10元无门槛券
手把手带您无忧上云