日志从最初面向人类演变到现在的面向机器发生了巨大的变化。最初的日志主要的消费者是软件工程师,他们通过读取日志来排查问题,如今,大量机器日夜处理日志数据以生成可读性的报告以此来帮助人类做出决策。在这个转变的过程中,日志采集Agent在其中扮演着重要的角色。
在企业大数据体系建设过程中,数据采集是其中的首要环节。然而,当前行业内的相关开源数据采集组件,并无法满足企业大规模数据采集的需求与有效的数据采集治理,所以大部分企业都采用自研开发采集组件的方式。本文通过在vivo的日志采集服务的设计实践经验,为大家提供日志采集Agent在设计开发过程中的关键设计思路。
早期在系统规模较小的时候,系统的运维主要靠运维人员手工完成。随着业务的急剧膨胀、微服务化,运维面临巨大的挑战,日志数据管理也面临各种问题:
使用Linux的rename机制保证文件写入要么成功,要么失败,绝对不能出现写了一半的情况。
ELK 是 Logstash(收集)、Elasticsearch(存储 + 搜索)、Kibana(展示),这三者的简称,以前称为 ELK Stack,现在称为 Elastic Stack,后来还加入了 Beats 来优化 Logstash。我们之前介绍了 Elasticsearch 和 Kibana 的简单使用,现在重点介绍一下 Logstash。 Logstash 是一个开源数据收集引擎,具有实时管道功能。Logstash 可以动态地将来自不同数据源的数据统一起来,并将数据标准化到你所选择的目的地。Logstash 使用 JRuby 开发,Ruby 语法兼容良好,非常简洁强大,经常与 ElasticSearch,Kibana 配置,组成著名的 ELK 技术栈,非常适合用来做日志数据的分析。当然 Logstash 也可以单独出现,作为日志收集软件,可以收集日志到多种存储系统或临时中转系统,如 MySQL,redis,kakfa,HDFS, lucene,solr 等,并不一定是 ElasticSearch。
针对上述问题,为了提供分布式的实时日志搜集和分析的监控系统,我们采用了业界通用的日志数据管理解决方案 - 它主要包括 Elasticsearch 、 Logstash 和 Kibana 三个系统。通常,业界把这套方案简称为ELK,取三个系统的首字母。调研了ELK技术栈,发现新一代的logstash-forward即Filebeat,使用了golang,性能超logstash,部署简单,占用资源少,可以很方便的和logstash和ES对接,作为日志文件采集组件。所以决定使用ELK+Filebeat的架构进行平台搭建。
前言 随着Devops、云计算、微服务、容器等理念的逐步落地和大力发展,机器越来越多,应用越来越多,服务越来越微,应用运行基础环境越来多样化,容器、虚拟机、物理机不一而足。 面对动辄几百上千个虚拟机、容器,数十种要监控的对象,现有的监控系统还能否支撑的住?来自于容器、虚拟机、物理机的应用日志、系统服务日志如何采用同一套方案快速、完整的收集和检索?怎样的架构、技术方案才更适合如此庞大繁杂的监控需求呢?本文主要从以下几个方面来分享下笔者在日志监控方面的一些经验。 目录 一、DevOps浪潮下带来的监控挑
作者 CDA 数据分析师 大数据抽取转换及加载过程(ETL)是大数据的一个重要处理环节,Extract 即是从业务数据库中抽取数据,Transform 即是根据业务逻辑规则对数据进行加工的过程,
熟练使用Linux,熟练安装Linux上的软件,了解熟悉负载均衡、高可靠等集群相关概念,搭建互联网高并发、高可靠的服务架构;
蓝鲸智云,简称蓝鲸,是腾讯游戏运营部“腾讯智营”下的子品牌。它是一套基于 PaaS 的企业研发运营一体化技术解决方案,提供了一个完整的研发、运维、运营的PaaS技术平台。
最近很多人在咨询日志监控的事情,对于日志这个问题,简单也简单,不简单也不简单,日志最先反映出应用当前的问题,在海量日志里面找到我们异常记录,然后记录下来,并且根据情况报警,大家可以监控系统日志、nginx、Apache、业务日志。想用好用对,不是辣么容易,一直想系统的写下,无奈人比较懒,就把自己的微薄经验跟大家一起互相学习下。zabbix最主要的是监控日志文件中有没有某个字符串的表达式,支持日志文件正则和关键字正则,其是把日志文件中符合关键字的日志过滤出来入库,不包含的日志不采集,且只支持主动模式。
看到腾讯云大数据发布了「腾讯云大数据 ES Serverless 惊喜体验赢大奖」征文活动
今天终于又能抽出一点时间来写文章了,接着前一篇继续写。前一篇文章有博友就评论说写了很多废话,其实本身就是一些工作中的点点滴滴,自己想到什么就写什么,没有太多的构思文章的内容和结构,就算自己回顾自己工作的这五年吧。 上篇博客提到自己主要支持各个团队使用scribe归集日志,这也包括归集日志到hadoop系统里面。所以这时的自己开始接触hadoop生态系统了,刚开始也是从网上找各种安装使用教程,遇到各种问题也基本上都是通过google解决。通过安装和使用hadoop,对hadoop大部
就这样,大数据领域蓬勃发展了好几年,有很多伙伴执迷于技术,成为了分布式计算与存储的领域专家。也有很多伙伴执迷于数据,成为了行业的数据研发专家。当然还有很多小伙伴,热衷于工具系统开发,成为了数据技术专家。那么我们回过头来考虑,什么是大数据,什么又是数据仓库,什么又是数据技术。大数据其实是个非常笼统的感念,它是由数据仓库演化而来的数据与技术方法论,那么我们先说一下数据仓库的由来:
由于公司项目较多,所部署服务产生的日志也较多,以往查看服务器日志只能通过xshell、putty等SSH工具分别连接每台服务器,然后进入到各个服务器,执行Linux命令查看日志,这样可能会带来以下问题:
大数据的发展伴随着互联网技术的进步,数据量的增大、数据源的增多,大数据在互联网时代针对数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。
简介 ELK并不是一款软件,是一整套解决方案,是由ElasticSearch,Logstash和Kibana三个开源工具组成:通常是配合使用,而且先后归于Elastic.co公司名下,简称ELK协议栈. 日志的收集和处理 在日常运维工作中,对于系统和业务日志的处理尤为重要。日志主要包括系统日志,应用日志,应用程序日志和安全日志。系统运维和开发人员可以通过日志了解服务器软硬件信息,检查配置过程中的错误及错误发生的原因。经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误。 通常,日
Gartner的定义:安全信息和事件管理( Security Information Event Management)技术通过对来自各种事件和上下文数据源的安全事件的实时收集和历史分析来支持威胁检测和安全事件响应。它还通过分析来自这些来源的历史数据来支持合规报告和事件调查。SIEM技术的核心功能是广泛的事件收集,以及跨不同来源关联和分析事件的能力。
ELK Stack 日志收集和检索平台想必大家应该比较熟悉,Elasticsearch + Filebeat + Logstash + Kibana。
在这之前,我们相继卷完了:关系型数据库 MySQL 、 NoSQL 数据库 Redis 、 MongoDB 、搜索引擎 ElasticSearch 、大数据 Hadoop框架、PostgreSQL 数据库、消息中间件 Kafka、分布式协调中间件 Zookeeper、消息中间件 RabbitMQ 这些系列的知识体系。今天开始,我们将踏上另一个系列的学习之路:企业级监控平台。
当前互联网和移动互联网发展迅猛,从事各个行业的企业为了应对日趋激烈的市场竞争,纷纷进行了数字化转型,利用移动互联网技术、云计算及大数据等新兴信息技术发展企业的数字服务,从而吸引客户,帮助销售和推广产品,提升客户体验。 然而,随之而来的是规模不断扩大的IT系统、日益复杂的系统架构,以及海量的IT运维数据,同时公司业务对IT系统的连续性要求也进一步提高。 面对这些新形势下的挑战,IT 运维管理(ITOM)需要从原有的人工加被动响应,转变为更高效、更智能化的运维体系,为新形势下的IT系统保驾护航。 当前传统
Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. It has a simple and flexible architecture based on streaming data flows. It is robust and fault tolerant with tunable reliability mechanisms and many failover and recovery mechanisms. It uses a simple extensible data model that allows for online analytic application.
为了更好的掌握水电站机组实时状态,提高设备运行维护水平,全面推进水电电厂“智慧电站”建设,需要针对水电机组励磁装置进行在线监测。
良好的监控环境为腾讯云容器服务高可靠性、高可用性和高性能提供重要保证。您可以方便为不同资源收集不同维度的监控数据,能方便掌握资源的使用状况,轻松定位故障。 腾讯云容器服务提供集群、节点、工作负载、Pod、Container 5个层面的监控数据收集和展示功能。 收集监控数据有助于您建立容器集群性能的正常标准。通过在不同时间、不同负载条件下测量容集群的性能并收集历史监控数据,您可以较为清楚的了解容器集群和服务运行时的正常性能,并能快速根据当前监控数据判断服务运行时是否处于异常状态,及时找出解决问题的方法。例如,您可以监控服务的 CPU 利用率、内存使用率和磁盘 I/O
最近公司正在往云原生进行转型,想拥有一套适合当前项目的监控系统,基于这个出发点,我们团队考虑使用 Prometheus 和 Grafana 组件。本篇将会以图解的方式剖析 Prometheus 的原理。
攻击溯源图是描述攻击者攻击行为相关的上下文信息,利用攻击溯源信息来挖掘攻击相关的线索是当前研究的热点。研究人员发现依靠系统监控日志数据构造具有较强抽象表达能力的溯源图进行因果关系分析,能有效表达威胁事件的起因、攻击路径和攻击影响,为威胁发现和取证分析提供较高的检测效率和稳健性。
操作系统内部本身是非常复杂,存在各种调用关系,本文主要讲解利用 atop+perf 双剑客来加速排障和分析一些常见的负载问题
综合日志审计平台,通过集中采集信息系统中的系统安全事件、用户访问记录、系统运行日志、系统运行状态等各类信息,经过规范化、过滤、归并和告警分析等处理后,以统一格式的日志形式进行集中存储和管理,结合丰富的日志统计汇总及关联分析功能,实现对信息系统日志的全面审计。
数据采集是大数据的基石,不论是现在的互联网公司,物联网公司或者传统的IT公司,每个业务流程环节都会产生大量的数据,同时用户操作的日志也会产生大量的数据,为了将这些结构化和非结构化的数据进行采集,我们必须要有一套完整的数据采集方案流程,为后续的数据分析应用提供数据基础。
导读:随着 K8s 不断更新迭代,使用 K8s 日志系统建设的开发者,逐渐遇到了各种复杂的问题和挑战。本篇文章中,作者结合自己多年经验,分析 K8s 日志系统建设难点,期待为读者提供有益参考。
当前有很多数据采集工具(Sqoop、DataX、Flume、Logatash、Filebeat等),他们或多或少都存在一些局限性。
这些数据都是一些非结构化的数据,我们可以统一将这些数据统一采集到splunk之后,splunk可以对这些数据进行索引、调查、监控、可视化等。
一、开源项目简介 bboss数据同步可以方便地实现多种数据源之间的数据同步功能,支持增、删、改数据同步,本文为大家程序各种数据同步案例。 二、开源协议 使用Apache-2.0开源协议 三、界面展示 四、功能概述 通过bboss,可以非常方便地采集 database/mongodb/Elasticsearch/kafka/hbase/本地或者Ftp日志文件源数据,经过数据转换处理后,再推送到目标库elasticsearch/database/file/ftp/kafka/dummy/logger。 数
日志审计是指通过全面收集企业软件系统中常见的安全设备、网络设备、数据库、服务器、应用系统、主机等设备所产生的日志(包括运行、告警、操作、消息、状态等)并进行存储、审计、分析,识别发现潜在安全事件与安全风险。日志审计同样属于数据安全领域的重要组成部分。
腾讯云产品有很多的分类,一般有一级大类和二级分类,其中,日志服务CLS是作为大类“存储”中的“数据处理与分析”类别下。如果我们想体验CLS服务,可以从下图的这个入口进入,地址:传送门。
说到监控现在最火的是全链路监控(服务调用+HTTP调用+数据源访问+MQ链路的监控),但我认为这是狭义的全链路监控,广义的概念应该不仅仅指APM(Appliation Perfance Manager & Monitor),还包括Loggong(系统日志、业务日志、框架日志)、Mertic(指标或者度量)、Trancing(追踪:覆盖微服务,存储,中间件)。而我今天要介绍的是全方位的开源监控工具链,为什么是全方位,就是比广义的全链路监控还要多,包括前端监控(用户行为监控)、压测监控、DevOps监控等等。
监控是整个运维乃至整个产品生命周期中最重要的一环,事前及时预警发现故障,事后提供详实的数据用于追查定位问题。目前业界有很多不错的开源产品可供选择。选择一款开源的监控系统,是一个省时省力、效率最高的方案。当然,对监控不是很明白的朋友们,看了以下文章可能会对监控整个体系有比较深刻的认识。
数据平台数据采集系统日志采集网络数据采集设备数据采集数据同步数据存储数据计算实时计算离线计算数据挖掘数据服务数据模型数据建模方法论数据模型管理体系表设计数据管理元数据收集和搜索数据血缘数据质量计算任务管理平台成本管理数据应用互联网工业政务
◆ 一、开源项目简介 滴滴LogiAM来源于滴滴多年来大量的运维实践经验。经历过多方考验,对于大规模Agent日志采集治理管控及巡检诊断已经沉淀出一套完善的解决方案。在云原生时代背景下,LogiAM以“应用/服务”为采集粒度,满足了从业务层面创建采集任务的需求。 ◆ 二、开源协议 使用Apache-2.0开源协议 ◆ 三、界面展示 ◆ 四、功能概述 ◆ 用户体验地图 主机/容器管理:用于维护主机、容器信息至系统(含:容器-主机关系) 服务管理:用于维护服务信息至系统(含:服务-主机、服务-容器关系)
视频方面: 推荐《毕向东JAVA基础视频教程》。学习hadoop不需要过度的深入,java学习到javase,在Java虚拟机的内存管理、以及多线程、线程池、设计模式、并行化多多理解实践即可。
为.NET 泛型主机的应用程序提供自安装为服务进程的能力,支持windows和linux平台。
监控是整个运维乃至整个产品生命周期中最重要的一环,事前及时预警发现故障,事后提供详实的数据用于追查定位问题。
监控是整个运维乃至整个产品生命周期中最重要的一环,事前及时预警发现故障,事后提供详实的数据用于追查定位问题。 目前业界有很多不错的开源产品可供选择。选择一款开源的监控系统,是一个省时省力、效率最高的方案。当然,对监控不是很明白的朋友们,看了以下文章可能会对监控整个体系有比较深刻的认识。
说在前面的话 此笔,对于仅对于Hadoop和Spark初中学者。高手请忽略! 1 Java基础: 视频方面: 推荐《毕向东JAVA基础视频教程》。学习hadoop不需要过度的深入,java学习到javase,在Java虚拟机的内存管理、以及多线程、线程池、设计模式、并行化多多理解实践即可。 书籍方面: 推荐李兴华的《java开发实战经典》 2 Linux基础: 视频方面: (1)马哥的高薪Linux视频课程-Linux入门、
.example_responsive_1 { width: 200px; height: 50px; } @media(min-width: 290px) { .example_responsive_1 { width: 270px; height: 50px; } } @media(min-width: 370px) { .example_responsive_1 { width: 339px; height: 50px; } } @media(min-width: 500px) { .example_responsive_1 { width: 468px; height: 50px; } } @media(min-width: 720px) { .example_responsive_1 { width: 655px; height: 50px; } } @media(min-width: 800px) { .example_responsive_1 { width: 728px; height: 50px; } } (adsbygoogle = window.adsbygoogle || []).push({});
在上一期《诊断专家》中,主要介绍的是和监控系统相辅相成的巡检平台,本期给大家带来的是日志平台。和传统的日志相比,腾讯专有云团队所使用的日志平台又会有哪些不同之处呢?
通常一个线上问题的定位流程是: 通过 Metric 发现问题, 根据 Trace 定位到问题模块,根据模块具体的日志定位问题原因。在日志中包括了错误、关键变量、代码运行路径等信息,这些是问题排查的核心,因此日志永远是线上问题排查的必经路径;
前 言 如何在网络安全领域利用数据科学解决安全问题一直是一个火热的话题,讨论算法和实现的文章也不少。前段时间看到楚安的文章《数据科学在Web威胁感知中的应用》,其中提到如何用隐马尔可夫模型(HMM)建立web参数模型,检测注入类的web攻击。获益匪浅,遂尝试用python实现该算法,并尝试在大数据环境下的部署应用。 算法一般过程 隐马尔可夫模型是一个统计模型,可以利用这个模型解决三类基本问题: 学习问题:给定观察序列,学习出模型参数 评估问题:已知模型参数,评估出观察序列出现在这个模型下的概率
领取专属 10元无门槛券
手把手带您无忧上云