VC++中使用OpenCV进行形状和轮廓检测 在VC++中使用OpenCV进行形状和轮廓检测,轮廓是形状分析以及物体检测和识别的有用工具。...如下面的图像中Shapes.png中有三角形、矩形、正方形、圆形等,我们如何去区分不同的形状,并且根据轮廓进行检测呢?...1、首先我们对原始图像进行预处理,将原始图形灰度化、高斯模糊、Canny边缘检测、膨胀化处理,最后得到一副膨胀的图形 2、基于这幅膨胀的图像,我们调用findContours函数从膨胀化的二值图像中检索出所有的轮廓...判断轮廓多边形的形状类型,特别注意矩形和正方形的区别,我们根据轮廓的宽高比来区分,当轮廓宽高比大于0.95或者小于1.05时我们可以认定轮廓为正方形 4、最后我们在第三步基础上,绘制轮廓或填充轮廓,颜色为粉色...;绘制边界包围盒,颜色为绿色;在边界包围盒左上方往上5像素的位置,绘制其形状的描述文字 C++示例代码 示例代码如下: #include opencv2/imgcodecs.hpp> #include
读入彩色3通道图像,转换成灰度图像,再转换成二值图像,完后检测轮廓。 // cvtcolor.cpp : 定义控制台应用程序的入口点。...OpenCV提供了很多函数,我们展示其中的几个: [cpp] view plain copy //轮廓的形状描述子 //外接矩形 Rect r0 = boundingRect(Mat(...其实,OpenCV还提供了许多其他的形状描述子,比如函数cv::minAreaRect计算了最小外界倾斜的矩形。函数 cv::contourArea估计轮廓区域的面积(里面的像素数)。...mode表示轮廓的检索模式 CV_RETR_EXTERNAL表示只检测外轮廓 CV_RETR_LIST检测的轮廓不建立等级关系 CV_RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息...得到了复杂轮廓往往不适合特征的检测,这里再介绍一个点集凸包络的提取函数convexHull,输入参数就可以是contours组中的一个轮廓,返回外凸包络的点集 还可以得到轮廓的外包络矩形,使用函数boundingRect
在计算机视觉中,轮廓检测是另一个比较重要的任务。它包含的操作有计算矩形边界、圆形边界、多边形边界等等。 我们以下面的黑猫图为例来讲解如何利用OpenCV进行轮廓检测。 ?...img0 = cv2.imread("cat.jpg") #img = cv2.pyrUp(img)#面积放大4倍 img0 = cv2.pyrDown(img0)#原图有点大,面积缩小到1/4 要做轮廓检测...我们可以看到,原图底部灰色的文字在转二值图的时候被过滤掉了,不参与轮廓检测。...此时,我们可以检测轮廓点集(图中绿色的外边界点) #2个返回值,分别是轮廓的点集(contours)和各层轮廓的索引(hierarchy) # openCV 4 , 否则注意版本差异!...之后,我们可以循环求得图形各部分的矩形轮廓线: for c in contours: #对于每一个轮廓 #无倾斜的 边界矩形框 x, y, w, h = cv2.boundingRect
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213, 来自:shiter编写程序的艺术 基础介绍 OpenCV里提取目标轮廓的函数是...findContours,它的输入图像是一幅二值图像,输出的是每一个连通区域的轮廓点的集合:vector>。...外层vector的size代表了图像中轮廓的个数,里面vector的size代表了轮廓上点的个数。... 输入图像image必须为一个2值单通道图像 contours参数为检测的轮廓数组,每一个轮廓用一个point类型的vector表示 hiararchy参数和轮廓个数相同,每个轮廓contours...mode表示轮廓的检索模式 CV_RETR_EXTERNAL表示只检测外轮廓 CV_RETR_LIST检测的轮廓不建立等级关系 CV_RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息
这个好像是骨头什么的,但是要求轮廓闭合,于是对图片进行一下膨胀操作,再次检测轮廓就好了。 // A closed contour.cpp : 定义控制台应用程序的入口点。...// #include "stdafx.h" // FindRotation-angle.cpp : 定义控制台应用程序的入口点。...// // findContours.cpp : 定义控制台应用程序的入口点。...// #include "stdafx.h" #include #include #include opencv2/opencv.hpp> #include...opencv2/core/core.hpp> #include opencv2/imgproc/imgproc.hpp> #include opencv2/highgui/highgui.hpp
简介 OpenCV的“findContours”功能经常被计算机视觉工程师用来检测物体。OpenCV的存在,使得我们只需要编写几行代码就可以检测轮廓(对象)。...然而,OpenCV检测到的轮廓通常是分散的。例如,一个功能丰富的图像可能有数百到数千个轮廓,但这并不意味着图像中有那么多对象。...一些属于同一对象的轮廓是单独检测的,因此我们感兴趣的是对它们进行分组,使一个轮廓对应一个对象。...实现思路 当我在项目中遇到这个问题时,我花了很多时间尝试使用不同的参数或不同的OpenCV函数来检测轮廓,但没有一个有效。...我不知道如何输入正确的参数,我怀疑轮廓检测的数据类型是否适合该函数。 我需要使用python 2.7、OpenCV 3.3.1和Numpy 1.11.3。
导读 本文给大家分享一个用OpenCV传统方法实现形状检测的小案例。...: 上图中包含了矩形、正方形、三角形、圆形和五角形共5种形状,我们的目的是将其定位并标注对应的形状,效果如下: 实现步骤 【1】 图片转为灰度图,做二值化。...+轮廓多边形逼近,计算轮廓多边形逼近结果对应的边数量; contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_LIST, cv2....0.01*cv2.arcLength(contour,True), True) # Checking for Triangles if len(vertices) == 3: len(vertices)得到轮廓逼近多边形的边数...width * 1.0 / height) >= 0.95 and abs(width * 1.0 / height) <= 1.05: ② 区分星形(四角形/五角形)和正多边形(正八边形/正十边形)除了检测边数还可以加上凸包缺陷计算
今天分享一个OpenCV检测轮廓极点实例,原图如下,我们需要检测出地图中最大轮廓的上下左右四个极点,并进行标注显示。 ? 第一步:阈值处理分割出地图轮廓 ?...第二步:轮廓筛选,找到我们需要的轮廓 第三步:计算对应轮廓的极点坐标并标注 Python OpenCV源码与效果图如下: import numpy as np import cv2...=(0, 255, 0), textSize=20): left, top = pt[0], pt[1] if (isinstance(img, np.ndarray)): #判断是否OpenCV...C++ OpenCV核心代码如下: box[i] = minAreaRect(Mat(contours[i])); //计算每个轮廓最小外接矩形 if (box[i].size.width < 50...|| box[i].size.height < 50) continue; //计算轮廓极值点 Point extLeft = *min_element(contours[i].begin(),
效果还是有点问题的,希望大家共同探讨一下 ? ? ? // FindRotation-angle.cpp : 定义控制台应用程序的入口点。...opencv2/core/core.hpp> #include opencv2/imgproc/imgproc.hpp> #include opencv2/highgui/highgui.hpp...canny边缘检测 cvtColor(midImage,dstImage, CV_GRAY2BGR);//转化边缘检测后的图为灰度图 //【3】进行霍夫线变换 vector lines...CvMemStorage *storage = cvCreateMemStorage(0); //开辟内存空间 CvSeq* contour = NULL; //CvSeq类型 存放检测到的图像轮廓边缘所有的像素值...);//这函数可选参数还有不少 for(; contour; contour = contour->h_next) //如果contour不为空,表示找到一个以上轮廓,这样写法只显示一个轮廓
OpenCV是一个巨大的开源库,广泛用于计算机视觉,人工智能和图像处理领域。它在现实世界中的典型应用是人脸识别,物体检测,人类活动识别,物体跟踪等。 现在,假设我们只需要从整个输入帧中检测到一个对象。...因此,代替处理整个框架,如果可以在框架中定义一个子区域并将其视为要应用处理的新框架,该怎么办。我们要完成一下三个步骤: • 定义兴趣区 • 在ROI中检测轮廓 • 阈值检测轮廓轮廓线 什么是ROI?...(输出)蓝色矩形覆盖的区域是我们的投资回报率 现在,如果您也想绑定感兴趣的对象,那么我们可以通过在ROI中找到轮廓来实现。 什么是轮廓? 轮廓线是 表示或说是限制对象形状的轮廓。...如何在框架中找到轮廓? 对我而言,在将ROI框架设为阈值后,找到轮廓效果最佳。因此,要找到轮廓,手上的问题是- 什么是阈值? 阈值不过是图像分割的一种简单形式。...我们可以做的另一件事是,我们可以遮盖ROI以仅显示被检测到的轮廓本身覆盖的对象。再次- 什么是图像MASK? 图像MASK是隐藏图像的某些部分并显示某些部分的过程。这是图像编辑的非破坏性过程。
霍夫空间 但是我们有一个问题,当 y = mx + b 时,我们不能表示一条垂直线,因为斜率是无限的。所以我们需要一种更好的参数化方式,极坐标(ρ 和 θ)。...霍夫变换是一种特征提取方法,用于检测图像中的简单形状,如圆、线等。 “简单”特征是通过参数的形状表示推导出来的。...使用 OpenCV 检测直线 在OpenCV中,使用霍夫变换的线检测是在函数HoughLines和HoughLinesP(概率霍夫变换)中实现的。我们将重点讨论后者。...使用 OpenCV 检测圆 该过程与直线的过程大致相同,不同之处在于这次我们将使用 OpenCV 库中的不同函数。...结果: 圆形检测示例 结论 霍夫变换是一种用于检测图像中简单形状的出色技术,具有多种应用,从医学应用(如 X 射线、CT 和 MRI 分析)到自动驾驶汽车。
我还有改变的可能性 一想起这一点 我就心潮澎湃 文章目录 一、直线检测 使用霍夫直线变换做直线检测,前提条件:边缘检测已经完成 # 标准霍夫线变换 cv2.HoughLines(image...OpenCV实现的是一个比标准霍夫圆变换更为灵活的检测方法——霍夫梯度法,该方法运算量相对于标准霍夫圆变换大大减少。...param2:圆心检测的累加阈值,参数值越小,可以检测越多的假圆圈,但返回的是与较大累加器值对应的圆圈 minRadius:检测到的圆的最小半径 maxRadius:检测到的圆的最大半径 import...只能传入二值图像,不是灰度图像 2 轮廓的检索模式,有四种: cv2.RETR_EXTERNAL 表示只检测外轮廓...cv2.RETR_LIST 检测的轮廓不建立等级关系 cv2.RETR_CCOMP 建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。
一种比较方便的删除轮廓的处理方式,是我刚刚学习到的一个方法,在这之前,如果我想删除一个不需要的轮廓,用的方法是将该轮廓填充为背景色,之前的博客提到过,在countours容器中,如果把轮廓填充为背景色,...所以之前总是要填充之后从新copyto一下,然后重新找一遍轮廓,达到删除轮廓的效果。这种方式实在是low。...[contours_all.size() - 1]); contours_all.pop_back(); swap用于数据交换,将找到的轮廓放在容器的最后面,和j交换的轮廓是就是原来最后面那个,因为...contours_all.size()是轮廓的总个数,轮廓个数标号从0开始,所以contours_all.size()-1就是最后面那个轮廓,将两者交互之后,用pop_back()函数删除最后面那个数据...,完成删除指定轮廓的功能。
本文来自于段力辉 译《OpenCV-Python 中文教程》 边缘检测是图像处理和计算机视觉中的基本问题,通过标识数字图像中亮度变化明显的点,来捕捉图像属性中的显著变化,包括深度上的不连续、表面方向的不连续.... ---- 三、OpenCV 中的轮廓 1、概念 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。...它可以根据你提供的边界点绘制任何形状。它的第一个参数是原始图像,第二个参数是轮廓,一个 Python 列表。第三个参数是轮廓的索引(在绘制独立轮廓是很有用,当设置为 -1 时绘制所有轮廓)。...上边我们已经提到轮廓是一个形状具有相同灰度值的边界。它会存贮形状边界上所有的 (x, y) 坐标。但是需要将所有的这些边界点都存储吗?...不幸的是,在拉普拉斯算子中,所有实质性的和没有意义的边缘的检测都是0.但这并不是什么问题,因为我们可以过滤掉这些点,它们的一阶(sobel)导数值也很大。
利用vector迭代器(iterator)遍历内容,利用erase()函数删除轮廓,实验设计为小于20的轮廓被删除,为了效果更明显,在阈值分割前不做平滑和滤波的处理,代码如下: #include的被删除了。...补充一下drawContours()函数:主要用于画出图像的轮廓 CV_EXPORTS_W void drawContours( InputOutputArray image,...INT_MAX, Point offset=Point() ); 其中第一个参数image表示目标图像, 第二个参数contours表示输入的轮廓组...,每一组轮廓由点vector构成, 第三个参数contourIdx指明画第几个轮廓,如果该参数为负值,则画全部轮廓, 第四个参数color为轮廓的颜色, 第五个参数thickness为轮廓的线宽,
, 并计算外接矩形的横纵比例、轮廓面积、周长等数据, 然后使用这些数据实现特定几何形状轮廓的查找与过滤, 为后续的处理与分析剔除不正确的区域而保留候选对象。...调用该API会返回一个Rect对象实例,它是OpenCV关于矩形的数据结构, 从中可以得到外界矩形(边界框)的宽高, 然后就可以计算出轮廓的横纵比了。..., 首先需要得到四个顶点, 然后通过OpenCV绘制直线的API来完成旋转矩形的绘制。...感兴趣的小伙伴可以进一步细化该方法, 将计算得到的轮廓几何属性值如长度、面积等 通过putText函数显示到输出的图像上 ---- 参考材料 《OpenCV Android 开发实战》(贾志刚 著)...关于《OpenCV Android 开发实战》作者的GitHub项目 笔者基于作者GitHub维护的APP
SDK 解析文档博客目录 在 OpenXML 里面,定义形状的轮廓是通过 a:ln 也就是 OpenXML SDK 里面定义的 DocumentFormat.OpenXml.Drawing.Outline...类型,进行设置的 根据 ECMA 376 的 20.1.2.2.24 章 ln (Outline) 的定义,在 OpenXML 里面,通过 w (Line Width) 定义形状的轮廓粗细,也就是形状的宽度...通过 PowerPoint 打开如上文档,可以看到的视觉效果如下 尝试缩放一下 PowerPoint 的画布,可以看到形状的轮廓粗细跟随缩放 使用 OpenXML SDK 读取此属性的方法如下...} } 在 ShapeProperties 尝试获取 Outline 属性,如果形状没有轮廓,那么这个值是空。...将上面文档使用 PowerPoint 打开,可以看到在画布没有缩放时的界面如下 接着将 PowerPoint 的画布缩放到最大,可以看到形状的轮廓粗细依然没有任何变化,保持屏幕一个像素的大小 通过
微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 觉得文章对你有用,请戳底部广告支持 一、问题提出 这是一个来自OPenCV问答社区 - "answerOpenCV"问题,整编如下:...二、问题分析 从原始图片上来看,这张图片的拍摄的背景比较复杂,此外光照也存在偏光现象;而提问者虽然提出的是“将缝隙合并”的要求,实际上他还是想得到目标物体的准确轮廓。...三、问题解决 基于现有经验,和OpenCV,GOCVhelper等工具,能够很快得出以下结果 h通道: ? 去光差: ? 阈值: ? 标注: ?...四、算法关键 这套算法首先解决了这个问题,而且我认为也是稳健鲁棒的。其中,算法中除了经典的“hsv分解->ostu阈值->最大轮廓标注”外,最为关键的算法为顶帽去光差。...这个算法来自于冈萨雷斯《数字图像处理教程》形态学篇章,完全按照书本建议实现,体现良好作用。
因为本文主要是参考sunny2038的这篇文档,如果转载请注意原出处。 这篇文章主要介绍在Python中使用OpenCV检测并绘制轮廓。 轮廓检测 轮廓检测也是图像处理中经常用到的。...OpenCV-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓。 实现 使用方式如下: import cv2 img = cv2.imread("....补充: OpenCV-Python教程(11、轮廓检测)_sunny2038的专栏-CSDN博客_轮廓检测博客提到,可用下面的方式计算得到轮廓的极值点,如下 pentagram = contours[1...3.2.0.7)问题 cv.findContours返回值个数发生变化,变为3个。...参考: OpenCV-Python教程(11、轮廓检测)_sunny2038的专栏-CSDN博客_轮廓检测 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
OpenCV 入门教程:轮廓特征和轮廓匹配 导语 轮廓特征和轮廓匹配是图像处理中用于描述和比较轮廓的技术。通过提取轮廓的形状、面积、周长等特征,并进行比较和匹配,我们可以实现目标识别、形状分析等应用。...在本文中,我们将以轮廓特征和轮廓匹配为中心,为你介绍使用 OpenCV 进行轮廓处理的基本步骤和实例。...2 周长( Perimeter ):表示轮廓的边界长度。 3 边界框( Bounding Box ):表示能够完全包围轮廓的矩形框。...这个示例将加载参考轮廓图像和目标图像,并通过边缘检测和轮廓匹配判断目标是否存在。 3.2 形状分析 使用轮廓特征可以进行形状分析,比如判断轮廓的形状类别或测量形状的尺寸。...总结 通过本文的介绍,你已经了解了使用 OpenCV 进行轮廓特征提取和轮廓匹配的基本步骤。
领取专属 10元无门槛券
手把手带您无忧上云