数据框来源主要包括用代码新建(data.frame),由已有数据转换或处理得到(取子集、运算、合并等操作),读取表格文件(read.csv,read.table等)及R语言内置数据
生信技能树-数据挖掘课程笔记 数据框 #数据框的新建 df = data.frame(gene = paste0("gene",1:6),change = rep(c("up","down"),each = 3)) #数据框的读取 df df = read.csv("gene.csv") #数据框的属性 dim(df) #查看行数和列数 nrow(df) #查看行数 ncol(df) #查看列数 rownames(df) #查看行名 colnames(df) #查看列名 输出结果: 图片 图片 数据框的操
因为自己之前学习过一部分B站生信技能树的R语言入门视频,但实际使用时经常会遇到一些问题,这次参加了生信技能树的系统培训班想查漏补缺。这里是整理的第一周学习笔记,主要是针对以前存在的一些问题有了更清晰的认识。
R语言有六大基本数据结构,向量(Vector)、矩阵(Matrix)、数组(Array)、因子(Factor)、数据框(Data.Frame)、列表(List)。
数值型数据全部变成了字符型,怎么回事?其实是因为cluster那一列数据并不是数值型,而是字符型。因为这一列代表某一群细胞,如cluster0.所以才会出现这个情况。
约等于表格:1.数据框不是一个具体文件,只是R语言内部的一个数据;2.数据框每一列只能有一种数据类型
文件名$列名 = c()赋值修改后的向量($提取的是一个全新的列名,之前不存在的)
each和times的区别是times输出的是abcdabcdabcd,each输出的是aaabbbcccddd
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
2、read.csv(" ") ⚠️文件在当前的工作路径中可以直接使用文件名,否则需要使用绝对路径,否则就会报错。
1、merge(a,b),纯粹地把两个数据集合在一起,没有沟通a、b数据集的by,这样出现的数据很多,相当于a*b条数据;
约等于表格 但是:列有要求(同一列只允许同一种数据类型);不是文件(可以导出来成为一个文件);
## 0、Rstudio界面介绍及快捷键 # 运行当前/选中行 ctrl+enter # 中止运行 esc # 插入 <- Alt+- # 插入 %>% Ctrl+Shift+M # 快捷注释(支持多行选中)ctrl+shift+c 快捷注释后,如取消注释ctrl+shift+c # Rstudio自动补全 tab x <- 5 ## 1、生成数据 set.seed(0) set.seed(1) c() seq() #生成等差数据 rep() #重复生成数据 rep(1:10,
计算机语言的学习并不困难,关键是一定要由浅入深的实际操作练习。也许最开始的比较简单,学习者一带而过没有实际操作,之后的进一步学习很可能会陷入不知所云的困境,实际操作所带来的感觉是无法替代的,其价值也是非常重要的。
Vector向量----一维 matrix矩阵----二维,只允许一种数据类型 data.frame数据框----二维,每列只允许一种数据类型 list列表----可装万物 图片 数据框来源: 图片 内置数据框 x=iris volcano View(volcano) ##表格视图 > class(volcano) ##数据框中包括哪些数据类型 [1] "matrix" "array" heatmap(volcano) ##热图 > letters [1] "a" "b" "c" "d" "e" "f
数据类结构 数据类型 一维 vector 向量 数值、字符、逻辑都可;只有长度;只允许一种数据 二维 matrix 矩阵 向量二维化 只允许一种数据类型 二维 data.frame 数据框-二维,每列只允许一种数据类型 1.数据框来源 1)用代码新建 2)由已有数据转换或处理得到 3)读取表格文件 4)R语言内置数据 2.新建和读取数据框 df1 <- data.frame(gene = paste0("gene",1:4),change = rep(c("up","down"),each = 2),
R语言 控制流:for、while、ifelse和自定义函数function|第5讲
matrix 矩阵-二维,只允许一种数据类型;data.frame数据框-二维,每列只允许一种数据类型。
df1 <- data.frame(gene=paste0("gene",1:4),
step1 对matrix进行转置:使gene名变为列名,将样本名转化为data.frame中的第一列
今天发烧了一个上午,躺尸了整整一个上午,然后老板夺命连环call直接给我整pofang了,害,不说了,开始今天滴学习~
在大概了解了R语言和在自己电脑上安装了Rstudio之后,相信大家对学习使用R语言迫不及待了。接下来,我们会推出一系列的推文来帮助大家由浅入深的学习R语言,保证每一个同学在这系列推文结束的时候都能成为R语言编程的大牛。
5.3 增加新一列 e.p df1$p.value <- c(0.01,0.02,0.07,0.05)
1)现在学“表格” 二维:二维有两个:(1)matix 矩阵 —— 二维,只允许一种数据类型。(2)data.frame 数据框—— 二维,每列只允许一种数据类型(列与列之间相不相同都行)。
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说R语言笔记完整版[通俗易懂],希望能够帮助大家进步!!!
1)向量(vector):用于存储数值型、字符型或逻辑型数据的一维数组。函数c()用来创建向量:
---title: "2-R语言数据结构"output: html_documentdate: "2023-02-02"---矩阵:只允许一种数据类型的二维结构数据框:每一列只允许一种数据类型列表:可以装各种数据类型#重点:数据框#1.数据框来源# (1)用代码新建# (2)由已有数据转换或处理得到# (3)读取表格文件# (4)R语言内置数据#2.新建和读取数据框df1 <- data.frame(gene = paste0("gene",1:4), change =
初级统计函数 max() ,min() , mean() , median() ,var()方差 , sd()标准差 , sum()总和, length(x) # 长度(x中元素的个数), unique(x) #去重复(第一次出现不为重复,第二次出现为重复),duplicated(x)#检查重复值 , table(x) 重复值(因子)统计 ,sort(x) #排序 , dim() 查看行列数, nrow()查看行数,ncol() 查看列数
PS :我看到实习生还自创了一个函数:pca_plot = function(dddd,ggggg),看起来是比较有编程天赋的,值得大力培养!
专题一:玩转字符串1.检测字符串长度x <- "The birch canoe slid on the smooth planks."xstr_length(x)#检测字符串内的字符数,空格也算length(x)#向量里面元素的个数2.字符串拆分str_split(x," ")#以空格为分隔符号将字符串拆分开x2 = str_split(x," ")[[1]];x2y = c("jimmy 150","nicker 140","tony 152")str_split(y," ")str_split(y,"
在数据分析中,往往会遇到各种复杂的数据处理操作:分组、排序、过滤、转置、填充、移动、合并、分裂、去重、找重、填充等操作。这时候R语言就是一个很好的选择:R可以高效地、优雅地解决数据处理操作。(本章节为R语言入门第二部分总结篇:数据操作)
数据结构是指在计算机中存储和组织数据的方式,不同的数据结构有不同的特点和适用场景。R语言中的常用数据结构,包括向量、矩阵、数组、列表和数据框。关于数据结构的使用,我们将分四篇文章分别介绍每种数据结构的操作方法和代码示例。
在实际科研中很多数据是服从正态分布的,例如某一处理下小鼠的生理状况、某一样方内土壤的性质、小学生的身高等。但也有很多是不服从正态分布的,例如两种药物在不同医院的的疗效,这时候由于不同医院医疗水平不同,其治疗效果自然有差异,因此两种药物的数据不再符合正态分布。此外,很小的样本量一般是不能得出总体分布信息的。
碎碎念:这个没啥好仔细展示的,含义也很直观,主要是要记住有这个函数,等需要用的时候回来找
今天延续Day2讲完了全部的几个重要数据类型,都是后续生信分析非常重要的知识点以及小Tips,同时深深感受到代码思维的重要性。要写能换个环境和场景依然可运行的代码,而不是一次性的玩意儿
请注意,本文编写于 398 天前,最后修改于 378 天前,其中某些信息可能已经过时。
方式:RStudio中,菜单栏File→NewProject→NewDirectory→NewProject→DirectoryName
默认情况下,DESeq2 使用 Wald 检验来识别在两个样本之间差异表达的基因。给定设计公式中使用的因素,以及存在多少个因素水平,我们可以为许多不同的比较提取结果。在这里,我们将介绍如何从 dds 对象获取结果,并提供一些有关如何解释它们的解释。
坑:rnorm(10,mean = 0,sd = 18)rnorm(10,mean = 0,sd = 18)<(-2) :[]中和[]外是两个向量。
[1] "The birch canoe slid on the smooth planks."
使用rbind(),操作同cbind() 加和 colSums() 或 rowSums()
Vector一维 c(1,2,3,4,4) c("A","B","C") c(T,F,F,T,F)
不想排版,心情也不好,但是这个知识点很重要,尤其是学习R语言的朋友,请仔细看~ 一直以来我都是随便看了点R的编程教程,因为我学了一点点C,所以还算有基础,现在基本上简单看看教程就能懂一门语言了,区别只是熟练度而已。R用得比较多,所以还算擅长,但是很多快捷应用的地方,我总是寄希望于到时候再查资料,所以没能用心的记住,这次花了点时间好好整理了一下R里面关于数据操作的重点,我想,以后再碰到类似的数据处理要求,应该很快能解决了把。 首先看看排序: 在R中,和排序相关的函数主要有三个:sort(),rank(),or
一、玩转字符串 stringr包 图片 1.str_length() 检测字符串长度 x <- "The birch canoe slid on the smooth planks." x ### 1.检测字符串长度 str_length(x) #计算字符串中有多少字符 length(x) #计算向量中元素的个数 图片 图片 2. str_split 字符串拆分 x <- "The birch canoe slid on the smooth planks." x ### 2.字符串拆分 str_sp
领取专属 10元无门槛券
手把手带您无忧上云