文章主要讲述了如何通过自然语言处理技术,如词向量、文本分类、情感分析等,来对文本进行相似性分析。同时,文章也介绍了一些具体的应用场景,如搜索引擎、文本分类、情感分析等。
在上一期中,我们介绍了API资产的识别技术,探讨了API资产的定义以及各类风格API的识别技术。在本期中,我们将继续介绍API资产识别中的API聚合技术。
应用模糊匹配算法的最佳方案是,当列中的所有文本字符串仅包含需要比较的字符串,而不是额外的组件时。 例如,与比较相比,与Apples4ppl3s比比产生更高的相似性分数进行比较ApplesMy favorite fruit, by far, is Apples. I simply love them!。
最长公共子序列问题可以通过动态规划(Dynamic Programming)来解决。其基本思想是构建一个二维数组 dp,其中 dp[i][j] 表示字符串 text1 的前 i 个字符和字符串 text2 的前 j 个字符的最长公共子序列的长度。
故事起源于工作的一个实际问题,要分析两个文本序列间的相似性,然后就想着干脆把一些常见的字符串相似性内容一并整理一下好了。
本文介绍了如何使用Python和OpenCV库实现图像的局部敏感哈希(LSH)算法,并通过具体实验展示了该算法的有效性。同时,本文还探讨了如何将LSH算法应用于海量数据查找中,提供了一种高效的海量数据查找方法。
倘若要在一堆数据中对一个关键词进行匹配搜索,传统做法是把数据拆分开,然后遍历他们,看看是否包含这个关键词,对于 “fin” 和 “finish” 这样存在包含关系的单词来说是没问题的,但是对于 “fish” 和 “finish” 这样并不存在包含关系的单词就失效了,这时候期望计算出两个单词的相似性,比如 “fish” 和 “finish” 都包含 “ish”,“ish” 的长度是 3,我们可以理解相似性为 3。目前主流做法是通过最长公共子串来寻找两个或多个已知字符串最长的子串。
Oracle数据库23c引入了FUZZY_MATCH和PHONIC_ENCODE数据质量运算符来执行模糊字符串匹配。
一句话评价: 这可能是市面上(包括国外出版的)你能找到最好的讲python自然语言处理的书了
注意:动态规划和BLAST适用于不同比对情况。前者适合较少量序列间比对,BLAST适合从一组大量序列中搜索与查询相似的序列
最近好久没有写文章了,上一篇文章还是九月十一的时候写的,距今已经两个月了,期间一直在忙一些工作上的事情,今天终于有点空闲,所以写一篇文章散散心。
最近在做一个海量图片检索的项目,可以简单的理解为“以图搜图”,这个功能一开始是搜索引擎带火的,但是后来在电商领域变得非常实用。在制作这个图片检索的项目前,笔者搜索了一些资料,如今项目临近结尾,便在这里做一些简单的分享。本文先介绍图像检索最基础的一部分知识——利用 Python 检测图像相似度。
本系列代码已上传至github:https://github.com/sslovett/llm-application.git
现代搜索引擎的力量非常强大,可以让你瞬间从互联网中获取想要的知识。但是,现有技术也存在着无法忽视的局限性,比如搜索非文字内容或者内容难以用“关键词”描述时,都难以达到预期的搜索效果。更进一步,现有搜索技术难以让用户实现“语义”搜索,即通过文字内容的意义来检索相关内容。
词语相似性比较,最容易想到的就是编辑距离,也叫做Levenshtein Distance算法。在Python中是有现成的模块可以帮助做这个的,不过代码也很简单,我这边就用scala实现了一版。 编辑距离 编辑距离是指一个字符串改编成另一个字符串的最短距离,它描述了两个字符串的相近程度。比如: son -> sun ,只需要把o改成u即可,编辑距离为1 xing -> long,需要把x改成l,i改成o,编辑距离为2 o->long,需要在前面加上l,在后面加上ng,编辑距离为3 因此所有修改,移动,删
今天介绍美国佐治亚理工学院计算机学院的Jimeng Sun团队在AAAI2020的论文,该研究提出了一种分子生成模型的优化策略——CORE(Copy & Refine Strategy),其核心思想是:在每个生成步骤中,CORE将决定是从输入分子复制子结构(Copy)还是加入新的子结构(Refine)。
做舆情系统,爬虫采集了很多文章,这些文章都保存在了ES上,当用户看到一篇文章的时候,需要将这篇文章的相似文章都找出来。ES的底层是一个搜索引擎,查找相似文章没问题,不过文章都比较长,直接基于整个文章去计算相似性,恐怕不太妙。
对于文本去重来说,我个人处理上会从数据量、文本特征、文本长度(短文本、长文本)几个方向考虑。 常见的去重任务,如网页去重,帖子去重,评论去重等等。 好的去重任务是不仅比对文本的相似性,还要比对语义上的相似性。
文本相似度是指衡量两个文本的相似程度,相似程度的评价有很多角度:单纯的字面相似度(例如:我和他 v.s. 我和她),语义的相似度(例如:爸爸 v.s. 父亲)和风格的相似度(例如:我喜欢你 v.s. 我好喜欢你耶)等等。
如何使用thefuzz 库,它允许我们在python中进行模糊字符串匹配。此外,我们将学习如何使用process 模块,该模块允许我们在模糊字符串逻辑的帮助下有效地匹配或提取字符串。
前面已经陆续分享了几篇关于机器学习的博客,相信刚接触这个领域的朋友们肯定是比较感兴趣的,那么本篇博客让博主为大家介绍一些关于机器学习常见的面试题吧~
【CSDN 编者按】经过数十年的演进,人工智能走出了从推理,到知识,再到学习的发展路径。尤其近十年由深度学习开启神经网络的黄金新时代,机器学习成为解决人工智能面临诸多难题的重要途径。然而,这一涉及概率论、统计学、逼近论、凸分析、算法复杂度等理论的交叉学科让很多开发者犯难,尤其是纷繁复杂的各类算法。本文作者结合自身多年的工作经验和日常学习,汇编了一份2023年度的机器学习算法大全。希望在新的一年,这些算法可以成为开发者的“书签”,从而解决各类数据科学处理中面临的难题。 原文链接:https://terence
深度学习(DL)涉及训练神经网络,其原始形式由单层(即感知器)组成(Rosenblatt,1957)。感知器甚至无法学习逻辑异或等简单函数,因此后续工作探索了“深层”架构的使用,这增加了输入和输出之间的隐藏层(Rosenblatt,1962; Minsky和Papert,1969),通常称为多层感知器(MLP)或深度神经网络(DNN)的神经网络。本节介绍NLP和IR的一些常用DNN。有兴趣的读者可以参考Goodfellow等人。 (2016)进行全面讨论。
衡量两条向量之间的距离,可以将某一张图片通过特征提取来转换为一个特征向量。衡量两张图片的相似度就可以通过衡量这两张图片对应的两个特征向量之间的距离来判断了。
哈希(Hash)又称散列,它是一个很常见的算法。在Java的HashMap数据结构中主要就利用了哈希。哈希算法包括了哈希函数和哈希表两部分。我们数组的特性可以知道,可以通过下标快速(O(1))的定位元素,同理在哈希表中我们可以通过键(哈希值)快速的定位某个值,这个哈希值的计算就是通过哈希函数(hash(key) = address )计算得出的。通过哈希值即能定位元素[address] = value,原理同数组类似。 最好的哈希函数当然是每个key值都能计算出唯一的哈希值,但往往可能存在不同的key值
区块链系统开发的核心技术是哈希算法、非对称加密算法、共识机制、智能合约和分布式存储。接下来,我们依次粗略地介绍一下:
上一篇(R语言实现︱局部敏感哈希算法(LSH)解决文本机械相似性的问题(一,基本原理))讲解了LSH的基本原理,笔者在想这么牛气冲天的方法在R语言中能不能实现得了呢?
特征提取在提高分类的准确性中起着非常关键的作用. 对时序特征提取的方法进行归纳分类, 将有利于对特征提取整体性, 全面性的认识. 回顾现有的时间序列中特征提取的方法, 将其总结为四大类, 它们分别是基于基本统计方法的特征提取、基于模型的特征提取、基于变换的特征提取、基于分形维数的特征提取。
分子性质预测的核心原则之一是相似性原则,但是分子对之间存在活性悬崖的情况(即分子结构相似但是活性却相差巨大的情况)。
众所周知,目前微信公众号是最具商业价值的写作平台,这与它优秀的原创保护机制密不可分,如果你想将其他公众号上的文章标为原创,微信会给出类似如下的信息告诉你未通过原创校验逻辑。
Jieba分词是目前使用比较多的中文分词工具,我们在做文本处理以及关键词处理的时候经常需要使用分词技术提取我们需要的核心词信息。
近日,在NeurIPS 2020正式发布的论文入选名单中,腾讯安全科恩实验室聚焦解决二进制安全问题的《CodeCMR: Cross-Modal Retrieval For Function-Level Binary Source Code Matching》,凭借首次提出基于AI的二进制代码/源代码端到端匹配算法的创新研究入选。
现有的高通量筛选实验用于确定药物和靶标之间的生物活性是一个昂贵费时的步骤。因此,基于已经在临床实验中测量的相互作用,使用统计学和机器学习模型来估计新的药物-靶标的相互作用的强度是重要的替代方案。澳大利亚Deakin大学的Svetha Venkatesh课题组提出了GraphDTA,一种基于图神经网络的药物-靶标结合亲和力的预测方法。
本文主要介绍了如何使用Python的gensim库对中文文本进行分词和建立词袋模型。首先介绍了Gensim库的安装和配置,然后通过一个示例文本展示了如何使用Gensim库对文本进行分词和建立词袋模型。最后介绍了如何使用Gensim库中的TF-IDF模型进行相似性检索。
嵌入(embedding)是指将高维数据映射为低维表示的过程。在机器学习和自然语言处理中,嵌入通常用于将离散的符号或对象表示为连续的向量空间中的点。
直接比较图像内容的 md5 值肯定是不行的,md5 的方式只能判断像素级别完全一致。图像的基本单元是像素,如果两张图像完全相同,那么图像内容的 md5 值一定相同,然而一旦小部分像素发生变化,比如经过缩放、水印、噪声等处理,那么它们的 md5 值就会天差地别。
Chroma 是一个开源的嵌入式数据库,通过使知识、事实和技能可以插入到 LLM 中,从而轻松构建 LLM 应用程序。这里可以了解它的工作原理。
往计算机输入文字,是整个自然语言处理(NLP)领域的宏大故事的一部分,而 NLP 则是人工智能的重要分支研究领域。
第1,3和5行可能指的是拼写和格式略有偏差的同一个人。在小型数据集中,可以手动清洁细胞。但是在庞大的数据集中呢?如何梳理成千上万的文本条目并将类似的实体分组?
本月初 AI 研习社报道,Facebook 开源了 AI 相似性搜索工具 Faiss。而在一个月之后的今天,Facebook 发布了对 Faiss 的官方原理介绍。 它是一个能使开发者快速搜索相似多媒体文件的算法库。而该领域一直是传统的搜索引擎的短板。借助Faiss,Facebook 在十亿级数据集上创建的最邻近搜索(nearest neighbor search),比此前的最前沿技术快 8.5 倍,并创造出迄今为止学术圈所见最快的、运行于 GPU 的 k-selection 算法。Facebook 人工智
AI科技评论按:本月初AI科技评论曾报道Facebook 开源了 AI 相似性搜索工具 Faiss。而在一个月之后的今天,Facebook 发布了对 Faiss 的官方原理介绍。 它是一个能使开发者快速搜索相似多媒体文件的算法库。而该领域一直是传统的搜索引擎的短板。借助Faiss,Facebook 在十亿级数据集上创建的最邻近搜索(nearest neighbor search),比此前的最前沿技术快 8.5 倍,并创造出迄今为止学术圈所见最快的、运行于 GPU 的 k-selection 算法。Faceb
>align首先执行序列比对,然后进行结构叠加,进行多次迭代以便进行微调,在蛋白序列相似性大于30%的时候可以达到良好的效果。
本文介绍由美国IBM研究院的Pin-Yu Chen和Payel Das共同通讯发表在 Nature Machine Intelligence 的研究成果:本文作者提出了一个通用的基于查询的分子优化框架,query-based molecule optimization framework(QMO),其利用了分子自动编码器的潜在嵌入。QMO基于高效查询,在一组分子性质预测和评估指标的外部指导下,改进输入分子的期望性质。在相似性约束下优化有机小分子药物相似性和溶解度的基准任务中,QMO优于现有的方法。此外,作者还展示了QMO在两个新的具有挑战性的任务中的性能:(1) 优化现有潜在的SARS-CoV-2主要蛋白酶抑制剂,使其具有更高的亲和力;(2) 改进已知的抗菌肽以降低毒性。QMO的结果与外部验证的结果高度一致,为解决具有约束的分子优化问题提供了一种有效的方法。
不久前,人工智能顶会 NeurIPS 2020 放出接收论文列表,论文接收率创历史新低。而腾讯安全科恩实验室使用 AI 算法解决二进制安全问题的一项研究《CodeCMR: Cross-Modal Retrieval For Function-Level Binary Source Code Matching》成功入选。
涵盖了常用到的距离与相似度计算方式,其中包括欧几里得距离、标准化欧几里得距离、曼哈顿距离、汉明距离、切比雪夫距离、马氏距离、兰氏距离、闵科夫斯基距离、编辑距离、余弦相似度、杰卡德相似度、Dice系数。
一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文档列表。
对于web网页去重的应用,如抄袭、镜像等,通过将网页表示为字符k-grams(或者k-shingles)的集合,把网页去重的问题转化为找到这些集合的交集。使用传统的方法存储这些巨大的集合以及计算它们之间的相似性显然是不够的,为此,对集合按某种方式进行压缩,利用压缩后的集合推断原来集合的相似性。
近 90% 的用户 不会返回一个网站,如果他们有不好的体验。花点时间欣赏这个惊人的统计数据。网站可靠性工程师传统上专注于“五个 9”,确保网站在 99.999% 的时间内保持正常运行和可访问。然而,这只是保证积极用户体验的一部分。还有什么会导致用户点击离开网站并永远不再返回?
领取专属 10元无门槛券
手把手带您无忧上云