压缩算法是一种通过减少数据量来节省存储空间或传输数据的技术。压缩算法可以分为两种类型:有损压缩和无损压缩。 有损压缩算法会牺牲一定的数据精度或质量,在压缩数据的同时丢失一些信息。这种算法适用于音频、视频等多媒体数据,例如JPEG和MP3等格式。 无损压缩算法则能够完全还原原始数据,不会造成数据丢失。这种算法适用于需要准确还原数据的场景,如文档、代码等,例如ZIP和GZIP等格式。 常见的压缩算法包括哈夫曼编码、Lempel-Ziv算法、Run-Length Encoding(RLE)等。这些算法通过不同的方式对数据进行编码和解码,以实现数据压缩和解压缩的目的。
数据压缩是保留相同或绝大部分数据前提下减小文件大小的过程。它的原理是消除不必要的数据或以更高效的格式重新组织数据。在进行数据压缩时,你可以选择使用有损方法或无损方法。有损方法会永久性地擦除掉一些数据,而无损方法则能保证持有全部的数据。使用哪类方法取决于你要让你的文件保持多大的精准度。
0写在前面 web前端在越来越多的Hmtl5游戏 web App的复杂的web运用中需要更多有针对的压缩方案。 本文抛砖引玉,聊一下基于前端javascript以及Html5线上有损图像压缩,无损数据压缩方案等运用。 web项目需求中有很多资源压缩优化有很多不错的方案 比如针对文本js的compress 以及服务器gzip,比如sprite雪碧图+png压图。 在越来越多的Hmtl5游戏 webApp的复杂的web运用中需要更多有针对的压缩方案。 本文抛砖引玉,聊一下基于前端javascript以及H
综上所述,ClickHouse提供多种压缩算法和压缩字典技术来节省存储空间。在选择压缩算法和压缩字典技术时,需要根据数据的特性、压缩率、压缩与解压缩速度以及查询性能等因素进行综合考虑。
(本文改自多媒体导论我课上做的演讲)转眼就暑假了,这一篇我在4月份准备写结果写了一半就坑到了现在,也是很真实。
作为一个客户端开发,对于图片格式一直没有一个清晰的了解,这里简单的罗列出各种图片格式的区别,文章中有部分是他人的引用,会在底部放上链接,望轻喷。
上一篇学习了ziplist,是一种很紧凑的列表。但是在中间删除的效率真的是不敢恭维。然后我也写了点自己的想法,不过倒是没有想到deque。deque是STL中的一种数据结构,不过似乎在STL中不如其他几个数据结构大众化。在nginx的节点设计中这种deque模式可是大放异彩。
数据结构从逻辑结构上可以分为:集合、线性表、树、图 集合中常用的数据结构是背包等。 线性表包括栈、链表、队列等。 树包括堆、二叉树、哈夫曼树等。 图包括有向图、无向图、最小生成树、最短路径等(就职于高德地图的算法工程师,图的知识必须完全掌握(ง •̀_•́)ง)。 背包、栈、链表和队列在之前的一篇博文《基础大扫荡——背包,栈,队列,链表一口气全弄懂》中介绍了一下。二叉树和堆在《面向程序员编程——精研排序算法》中的堆排序部分仔细介绍过。 图若在未来有机会用到我会去研究一下,目前为止我的经历中用到图结构
在智能工厂逐渐推广应用中,数字化信息的数据量相当庞大,对存储器的存储容量、网络带宽以及计算机的处理速度都有较高的要求,完全通过增加硬件设施来满足现实需求是不可能的,必须采用有效的压缩技术实现数据在网络中的轻量传输。
此部分包含第15、16、17和18章,包含了计算机中传输的数据压缩(有损与无损)、网络数据在传输过程中如何保证其数据安全, 讨论计算理论,即哪些是可计算的,哪些是不可计算的,最后介绍当前热门的人工智能(AI)的观点,加深我们对计算机数据处理的的认识,为后续学习扩展基础认识。
本文主要介绍无损压缩图片的概要流程和原理,以及Lepton无损压缩在前期调研中发现的问题和解决方案。
上周部门会议上讨论的一个议题是如何节省Redis内存空间,其中有个小伙伴提到可以从压缩字符串入手,我觉得这是一个可以尝试的思路。因为有时候我们存在Redis中的值比较大,如果能对这些大字符串进行压缩,那么节省的内存空间还是很可观的。接下来将介绍几种常见的数据压缩算法,供大家参考。
百度NLP专栏 作者:百度NLP 引言 近年来,我们在神经网络模型与 NLP 任务融合方面深耕,在句法分析、语义相似度计算、聊天生成等各类方向上,均取得显著的进展。在搜索引擎上,语义相似度特征也成为了相关性排序系统最为重要的特征之一。模型越趋复杂,由最初的词袋模型(BOW)发展至建模短距离依赖关系的卷积神经网络(CNN),建模长距离依赖关系的循环神经网络(RNN),以及基于词与词之间匹配矩阵神经网络(MM-DNN)等等。同时,由于语言复杂、表达多样、应用广泛,为了更好的解决语言学习的问题,我们将更多的 NL
阅读目录 GIF(Graphics Interchange Format) PNG(Portable Network Graphics) JPG(Joint Photographic Experts Group) base64 APNG GIF/PNG/JPG/WEBP/APNG都是属于位图(位图 ,务必区别于矢量图); GIF/PNG和JPG这三种格式的图片被广泛应用在现今的互联网中,gif曾在过去互联网初期慢速的情况下几乎是做到了大一统的地位,而现如今随着互联网技术应用和硬件条件的提高,png和
来源:esingchan - 博客园 链接:www.cnblogs.com/esingchan/p/3958962.html(点击尾部阅读原文前往) 最近自己实现了一个ZIP压缩数据的解压程序,觉得有必要把ZIP压缩格式进行一下详细总结,数据压缩是一门通信原理和计算机科学都会涉及到的学科,在通信原理中,一般称为信源编码,在计算机科学里,一般称为数据压缩,两者本质上没啥区别,在数学家看来,都是映射。 一方面在进行通信的时候,有必要将待传输的数据进行压缩,以减少带宽需求;另一方面,计算机存储数据的时候,为了减少
本文与前期推送“你真的理解数码技术吗?”“字节的秘密”是同一系列。 3.1压缩魔法 在数码世界中,容量和速度总是紧缺资源,我们总是希望能用尽量少的字节,装下更多的内容;我们的硬盘总是不够用;我们的网络总是不够快。这一切,都需要使用一些数字魔法来帮助我们——压缩算法。 3.1.1通用压缩算法原理 如何用尽量少的空间来存放尽量多的信息,这个问题一直是所有软件工程师都希望解决的。因此,首先有一些通用的压缩方法被提出来,虽然这些算法被应用的非常广泛,但是其原理确实非常简单的。我们常用的压缩软件,比如ZIP/
“智能压缩”按照又拍云的说法是,同时支持 Gzip 和 Brotli 压缩算法。根据用于浏览器开启自动选择不同压缩方式。
除了上面这些压缩格式,像.jpg,.mp3,.avi这些,也都是有着压缩的作用,只不过跟上面.zip这些相比,它们执行的是有损压缩
广告素材中,图片类素材都是以静态图片为主,缺少交互感和吸引力,可能导致点击率偏低。为此,腾讯广告多媒体AI团队使用AI技术在图片焦点区域生成动态效果,以提升点击率。在落地页中,如果是以视频的形式不但交互过重,并且影响页面加载速度。因此,需要在保证展示效果的前提下使用压缩比尽可能大的GIF来做落地页展示。
jpeg优势: 非常通用,JPEG在色调及颜色平滑变化的相片或是写实绘画(painting)上可以达到它最佳的效果。 jpeg劣势: 它并不适合于线条绘图(drawing)和其他文字或图示(iconic)的图形,因为它的压缩方法用在这些图形的型态上,会得到不适当的结果;
这个系列将结合C/C++介绍无损压缩编码的实现,正如Charles Petzold在<CODE:Hidden Language of Computer Hardware and Software>里所表达出来的意思一样,计算机最本质的能力就是将各种信息通过电路的开合转换成为一系列的数字,然后对其按照一定的规则进行编码,利用这些编码记录一些动作或者数据,完成人们想要的功能。计算机的指令是一种编码,数据也是一种编码,正如人类用各自民族特有的符号组成自己的语言一样,计算机也是依靠着编码形成了自己的语言
数据压缩是提高 Web 站点性能的一种重要手段。对于有些文件来说,高达 70% 的压缩比率可以大大减低对于带宽的需求。随着时间的推移,压缩算法的效率也越来越高,同时也有新的压缩算法被发明出来,应用在客户端与服务器端。
这个过程中会把图片拆成8X8的小块对每一个小块都做了操作,用64X64的基底进行加权重新计算后重新映射成新的8X8的块(这个新的8X8的块如果修改了之后人眼是观测不出来的,也就是cbcr空间的压缩)
点击关注公众号,Java干货及时送达 近日,国际电气与电子工程学会(Institute of Electrical and Electronics Engineers,简称 IEEE)宣布,授予 IEEE 终身 Fellow Jacob Ziv 2021 年度 IEEE 荣誉勋章。 Jacob Ziv 这位如今已 90 岁的前辈,是一位以色列科学家,他开发了通用无损压缩算法 Lempel-Ziv,为后来的 GIF、PNG 和 ZIP 文件的开发奠定了坚实的基础。 1、无损压缩算法发展史 20 世纪 70
对于数据可视化而言,我们在使用软件可视化做图之后,还要把图片进行保存。所以对于图片的格式就需要有一些认识。
近日,国际电气与电子工程学会(Institute of Electrical and Electronics Engineers,简称 IEEE)宣布,授予 IEEE 终身 Fellow Jacob Ziv 2021 年度 IEEE 荣誉勋章。
丰色 发自 凹非寺 量子位 | 公众号 QbitAI 无损压缩鼻祖去世了,享年86岁。 他就是Abraham Lempel,来自以色列的科学家。 正是因为他和同事发明的LZ77/LZ78压缩算法,才有了Zip、GIF、PNG、TIFF、MP3、PDF等直到今天还在流行的文件格式。 他生前曾就职的的以色列理工学院评价他为“学院成立100年来最伟大的研究员之一”,并称很少有科学家“像他一样在技术发展以及我们的日常生活领域中都产生了如此大的影响”。 无数网友为他的离世哀悼。 有人还表示: 我的研究生论文主
机器之心转载 来源:知乎 作者:周昕宇 压缩即智能? 最近在研究 OpenAI 发现,他们其实做的只是机器学习的第一原理,也是机器学习的终局:优化对于未来观察的无损传输的压缩大小。进一步分析后发现,这个理论非常 powerful,因为仅仅如此,便能通向超过人类的智能 (Super-human Intelligence)。本文会介绍无损压缩的基本原理和具体实现以及对于 AI 未来发展的猜想。 在和小伙伴一起研究的过程中,引出一些有意思的讨论。虽然由于篇幅限制不会特别深入,但希望能引起大家的兴趣。讲无损压缩的
事接上回,当我继续想办法看懂 Brotli的第一阶段时,发现自己卡住了。毕竟自己的基础不是很好,只能想办法去解决,苦闷了一个下午,没办法,只能去死磕这一阶段参考的几篇论文。而我磕的四篇论文中的第一篇,就是这个—— 《Bicriteria Data Compression》。
学习、预测和压缩之间存在着密切的联系。ChatGPT的成功吸引了公众的广泛关注,并将学习与预测之间的联系推向了前沿。LLaMA和GPT-4等大型语言模型带来的主要进步是,它们能够根据已知的前几个单词(Token)来出色地预测段落中的下一个单词(Token)。
Kafka使用数据压缩,最高可提升约几十倍吞吐量。数据压缩不仅可节省存储空间,还可用于提升网络传输性能。这种使用压缩提升系统性能的方法,不仅在MQ使用,日常开发也可。比如传输大量数据或要在磁盘、数据库中存储较大数据,这些情况下,都可考虑使用数据压缩提升性能,还能节省网络带宽和存储空间。
对于列压缩选项,PostgreSQL 14提供了新的压缩方法LZ4。与TOAST中现有的PGLZ压缩方法相比,LZ4压缩更快。本文介绍如何使用整个选项,并和其他压缩算法进行性能比较。
作为 Web 开发者,我们日常需要与各式各样的图片格式打交道,以至于有些知识几乎已经成为常识,比如我们应该都知道 PNG 可以支持透明度,jpg 可以压缩到较低的质量,而 gif 则可以显示动图……但是,你知道这些不同的图片格式是如何产生的、并且演进至今的吗?
本文介绍了压缩技术的发展历程,以及AI正在如何改变压缩技术的现状。随着移动互联网和物联网设备的普及,压缩技术正在成为一项重要技术,能够有效提高数据传输速率。传统的压缩方法是基于统计的,但它们无法很好地处理复杂的文件结构。而AI技术,如神经网络和深度学习,已经在许多领域取得了显著的成果,包括图像和视频压缩,可以提高压缩效率,并降低数据存储需求。随着AI技术的不断发展,它可能会成为未来压缩技术的主流方法,为互联网和移动设备带来更好的体验。
WebP 的优势体现在它具有更优的图像数据压缩算法,能带来更小的图片体积,而且拥有肉眼识别无差异的图像质量;同时具备了无损和有损的压缩模式、Alpha 透明以及动画的特性,在 JPEG 和 PNG 上的转化效果都相当优秀、稳定和统一。
脑图地址 1. 分形图像压缩技术 作者 技术 功能 优点 缺点 应用 结果 Jeng et al. (2009) Huber 分形图像压缩 嵌入线性Huber回归编码 保持图像质量 高计算成本 适用于损坏的图像压缩 由于图像中的噪声HFIC对异常值具有较好的鲁棒性,PSNR为>26.42 dB Thomas and Deravi (1995) 使用启发式搜索分形图像压缩 通过自变换有效利用图像冗余 达到双倍压缩比率 编码排序长度比解码长 多媒体和图像归档 压缩比达到41:1 Kumar et al. (19
图片资源,在我们的业务中可谓是占据了非常大头的一环,尤其是其对带宽的消耗是十分巨大的。
每个像素所能显示的彩色数为2的8次方,即256种颜色。这种彩色深度适用于较古老的显示设备和简单的图像场景。它在色彩表现方面相对较弱,颜色过渡可能显得不够平滑,导致图像呈现出颗粒感,不适合表现细腻的色彩变化。
之前在听到数据压缩的时候, 想着肯定是某些高深莫测的算法, 能够完成数据的压缩这种事情, 最近看了看, 嗯, 至少咱还是能看懂的.
WebP格式,谷歌(google)开发的一种旨在加快图片加载速度的图片格式。图片压缩体积大约只有JPEG的2/3,并能节省大量的服务器带宽资源和数据空间。Facebook Ebay等知名网站已经开始测试并使用WebP格式。 WebP 在各大互联网公司已经使用得很多了,国外的有 Google(自家的东西肯定要用啦,Chrome Store 甚至已全站使用 WebP)、Facebook 和 ebay,国内的有淘宝、腾讯和美团等。 Webp优势: 更优的图像数据压缩算法 更小的图片体积 肉眼识别无差异的图像质量
随着web的发展,网站资源的流量也变得越来越大。据统计,60% 的网站流量均来自网站图片,可见对图片合理优化可以大幅影响网站流量,减小带宽消耗和服务器压力。
答案就是缓存。我们通过将HTTP响应的数据缓存到本地,下次请求时直接从本地磁盘读取,避免网络IO的耗时。
我想你第一时间想到的是,使用 KeepAlive 将 HTTP/1.1 从短连接改成长链接。
基于文本的图像生成模型火了,出圈的不止有扩散模型,还有开源的Stable Diffusion模型。
5G网络作为第5代的移动通信网络,它的网络峰值传播速度可1以达到10Gbps/s.这比4G的的传输速度快数百倍.举个例子,整部超高画质电影下载可在1秒钟之内下载完成.
过去几周,Arch Linux 维护人员比较了不同的压缩算法,最终计划使用 zstd 取代 devtools 中的默认压缩算法。
前言 在本系列的第一期我们介绍了图片 AVIF 压缩,作为最前沿的压缩技术,AVIF 确实有着无数的优点。但时代的进步是循序渐进的,在一些较老的终端或设备上,可能短时间内确实无法支持 AVIF 格式,那如何能让这部分业务享受到时代的红利? 对此,数据万象推出了基于最通用的jpg、png、gif等图片格式的压缩能力——图片极智压缩,可以在不改变图片格式的情况下,大幅减小图片大小,并保证图片视觉上的无损查看。 图片压缩与主观视觉 最早期的时候,最先出现的图片压缩算法是无损压缩算法,这些无损压缩算法使用lz77
ClickHouse提供了多种压缩算法来满足不同场景的需求,用户可以根据数据类型和性能要求选择适当的压缩策略。
领取专属 10元无门槛券
手把手带您无忧上云